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SOFT PHONONS AND MAGNETIC PHASE TRANSITIONS
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A correlation between the structural and magnetic phase transitions due to the interac-
tion of soft phonons with magnetic subsystem is discussed. On the basis of a model Hamil-
tonian equations for order parameters of structural and magnetic phase transitions are
obtained. The possibility of magnetic transition of the type easy axis-easy plane induced
by a structural transition and the appearance of a weak ferromagnetism, observed in KMnF;,
is considered.

1. Introduction

Recently a great attention has been paid to the investigation of magnetic crystals
which undergo structural transitions. In some of them a mutual correlation between magnet-
ic and structural transitions is observed (e.g. crystals with ferroelectric and magnetic
properties [1], Jahn-Teller crystals [2], ferro- and antiferromagnets with a consecutive
sequence of structural transitions, e.g. KMnF, [3]). This correlation can be explained
as an effect of the interaction of a soft lattice mode describing the structural transition,
with the spin subsystem. The theoretical investigations in this field, to the best of our
knowledge, have principally phenomenological (e.g. [4]) or model (e.g. [5]) character.
At the same time there exists the theory of structural phase transitions based on the con-
cept of local normal coordinates [6], which reasonably describes the lattice dynamics, and
the theory of the spin-phonon interaction in the highly anharmonic crystals [7], including
these, which undergo structural transitions.

In the present paper we join the above mentioned two approaches and we propose
a microscopic theory for description of structural and magnetic transitions with a self-
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consistent account of their mutual influence. The strictional interaction (the interaction
with acoustic phonons), which plays an important role in the determination of the character
of magnetic and structural phase transitions, in the present paper is not considered, al-
though it can be also taken into account in the framework of proposed theory.

In the next Section the model Hamiltonian for the system undergoing structural and
magnetic phase transitions is introduced. In Section 3, on the basis of this Hamiltonian
the uniaxial ferro- and antiferromagnets are considered. In Section 4, the transition from
antiferromagnetic state to the state with weak ferromagnetism, induced by a structural
transition is considered and the qualitative explanation of the similar transition in KMnF3
is proposed.

2. Spin-soft phonons interaction

We consider an insulating crystal with magnetic atoms and we assume that the poten-
tial energy of the lattice, the exchange interaction and the parameters of the crystal field
depend on the instantaneous positions of atoms. Expanding these functions in Taylor
series with respect to the displacements of atoms from their equilibrium positions, we
obtain the Hamiltonian of magnetic crystal with spin-phonon interaction (cf. [7]. Taking
further into account the soft phonons, the most important for the structural transition,
we can write the Hamiltonian of the crystal in the model form

H = H,+Hg+Hgs, 1)
Hy =1 Y P00 PN+ Y vall, 1DQ:(DQ()
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where we have introduced local normal coordinates Q,(/) and their conjugated momenta
P,(]) for the lattice normal mode which describe local distortion in. the /-th elementary cell.
The parameters 0;,7(l, 1), v3;AL ') and Ty(ils, - 1,2,) are used for the model description
of the phase transition (cf. [6]).
We write the spin Hamiltonjan in general form
HS . Z hz 71c+ Z K;(S;‘K)Z'I' Z Dzﬁ’(l’ l/)Sﬁcsf’x"{"% z Jmc’(la l’)Si‘x :"x” (3)
Ika 253 Ixa,l'x’'B I ,'x'a
where SZ is the effective spin operator for the atom of the type x in the /-th elementary
cell, @ = x,y, z. h: = gu " is the Zeeman energy. K are the parameters of the single
ion anisotropy. D, and £, are the parameters of anisotropic and isotropic exchange
interactions. For the sake of simplicity we have assumed that the crystal has noncubic
symmetry (e.g. a tetragonal one) and that the effective spin of a magnetic atom S, = 1,
so it is sufficient to take into account only the bilinear terms in the spin operators.
The terms in the magnetic energy depending on the local normal coordinates lead
to the spin-phonon interaction
Hys = S Va(Si*+ 3, VileeSiStes @
2

Ixa,l'x’p
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where V. = VE{Q,D}), V,‘f’ e = VE{QD, Q(I)}) are the polynomials with respect
to the variables Q,(/). The explicit form of these expressions can be determined from
the symmetry requirements for a specific model of the crystal. We have assumed that the
coupling between lattice and spin subsystems arises due to the dependence of the crystal-
-field and exchange anisotropy energy on the positions of atoms and therefore on the local
normal coordinates. Since the Hamiltonian is a bilinear form of the spin operators, so the
time reversal symmetry requirements are fulfilled.

The Hamiltonian (1)-(4) has a quite general form which is convenient for the descrip-
tion of the various structural and magnetic phase transitions. To consider the most impor-
tant features of the proposed model, it is sufficient to investigate only some particular
cases of the Hamiltonian (1)-(4). This will be done in the next Sections.

3. The uniaxial ferro- and antiferromagnets

To describe the structural phase transition connected with lattice instability with re-
spect to the nondegenerate soft optic mode described by one-component local normal
coordinate Q;, the Hamiltonian (2) can be written in the simple form

H - 1P2 4 , B _, 1 2 5)
L‘—Z M t—*Z‘Qz-l-ZQ:}"'ZZ‘PU’(Q:"Q:’)s 6);
1

LU
where M is the effective mass for the soft optic mode under consideration. 4, B and ¢y
= @(I—-1’) are constants of the model which determine a character of the structural transi-
tion. In the case of displacement-type phase transition, the anharmonicity of lattice vibra-
tions is small and @, = ), @(/—-1")> A4 [8].
&

In description of the magnetic phase transition we confine ourselves to the discussion
of the simple model of the uniaxial ferro- or antiferromagnet with the Hamiltonian
Hs =Y hSie— L KLSi+% Y Jll-1)81 S0, (©)
23 Ik 1

KUK’

where we will assume, that K, > 0. In the spin-phonon interaction, we take into account
only single-ion contribution

Hys = 12 {a,0,+% 5,07} (S5 (7

which allows us to consider in the simplest way the mutual influence of magnetic and lattice

subsystems.
First let us consider the equation for the order parameter in the structural phase

transition, which is defined as the average value of the local normal coordinate
71 = <Ql>7 Ql = 11+u1, (8)

where
H

(.>=Tr { e T}/Tr {e_ %}
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and H = H;+ Hg+ Hg; is the total Hamiltonian (5)-(7) of the system. From the minimum
condition for the free energy, we get

= 7ot { '%} e ©)
— = T — rle =(—)=0.
on on an
Next, taking into account (5)~(7) we obtain
—An+B{+u)®y+ X (ae+bap) (5D = 0. (10)

‘Neglecting the small cubic anharmonicity,

Cuynduty ~ (BIT) (Tpo)® S Alpo < 1

and introducing the dimensionless variables

~JB _B .
E_' 2—"’ y"'j<u1>,

“—_l_ E 7)2 _i Z)2
a= A\/A Zax<(sn) >s . Abe<(SK) >9 (11)

we obtain the equation for the order parameter
& =(1-b-3y)~a. (12)

As it can be seen, a nonzero solution of above equation ¢ # 0 always exists, when a # 0.
"The situation is similar as in the case of the system in an external field —a&. However, in
the case when a < 1, the range of temperature T > T, exists where ¢ < 1. At the same
time for T < Ty, & ~ 1 and therefore we can consider T, as the temperature of structural
phase transition. To evaluate this temperature and to determine the temperature depen-
dence &(T), it is necessary to consider the lattice dynamics of this model.

Introducing displacement-displacement Green function @,,(t—1") = uyt); up(t')D
and using the standard procedure for setting up a set of equations for these functions,
described for spin-phonon systems in [7], we get

1 ‘—F e 1
Dp(w) = — et t=h — 13
g NAZ Vv —(A+fo—1) (3)

>

q

where v = w?/(4/M), f, = ¢(q)/A. @(q) is the spatial Fourier transform of the interaction
@(I—-1"). The gap in the spectrum of soft optic mode 4 is defined by the expression

4 = 3(&2+y)—(1-b). (14)

The last equation has been obtained in the lowest order of the selfconsistent phonon
field approximation (cf. [7], [8]). The displacement correlation function y in (12) is defined



by the equation

0
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where o2 = (4/M)(A4+fo—f,). Solving the system of selfconsistent equations (12), (14)
and (15), we can determine the temperature dependence &(T), A(T) and find the tempera-
ture Ty, corresponding to structural transition.

It is useful for further discussion to estimate the constants of the spin-phonon interac-

tion a and b. To do this, we assume that the crystal field energy can be estimated as follows:
KS? ~ (an+% byp*)S? ~ £J,S?,
where & = K/J, is the ratio of the anisotropy energy and the exchange energy Jo = Y. J(I—1").
o

Assuming, that the temperature of magnetic phase transition T, ~ J,S? and the tempera-
ture of structural phase transition T ~ @o(4/B) (cf., e.g. [8]), we get the following estima-
tions:

JoS® T, 9o

5!\/ ~ L ——— A

@B~ T, A (e

Since for the displacement-type phase transition ¢, > A [8], the constants a, b will be
small only for sufficiently small anisotropy, ¢ < 10-2. In this case, for T > T,, where T,
is determined from the equation

1=b(To)—3{y(To) + [} a(T)J**} = 0, an
the values of the order parameter are small:
§(T) < &To) = [4a(Ty)]">.

The gap in the phonon spectrum A(T) attains its minimum value, 4,,.(T,) = (3/2)[2a(T)]*">
at the temperature T, determined from the equation

T = £ {1=b(TY+3[% a(TYT**}. (18)

It can be noticed that T, > T, but for small values of a and b, these temperatures are
close to T§?, which is determined neglecting the spin-phonon interaction (cf. (13) and
(14) for a = 0 = b).

The influence of the magnetic subsystem on the structural transition, which we have
considered above, may be expected in the case T, > T,, when the parameters of interaction
a, b depend essentially on temperature. In the opposite case, T, < T, it is interesting
to consider the influence of structural transition on the magnetic subsystem. In this case,
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we use the molecular field approximation (MFA) to describe magnetic phase transition
in the system with the Hamiltonian (6), (7). We write the trial Hamiltonian in the form

HSO = IZ {'ﬂxslzx_lzx(slzx)z}y (19)

where the sublattices magnetization .#, and effective anisotropy constant K, are determined
from Bogolubov variational principle (cf. [7])
OF 0F

=0, — =0 20
o, SR, (20)

In this case, the trial free energy & has the form
fmam
F(T) = Fo(T)+ N {Hs+Hg,—Hgo).

Using (6), (7) and (19) we get
F(T) = Fo(T)+7 ), JuelS> (Serd

+ Y (he— il ) <S> — ¥ (K= V= K,) (SO, (21)
where
‘%K kk

Fo(T)=—-T Z In ¥ (—,1: > F) s (22)

Si
Vs (o ) = _Z_S exp (—am+ fm?), (23)
']mc' = z Jmc’(l— l/)s (24)

'z

Ve = a, Q> +% b0 (25)

Using the equations (20)-(23), we obtain following expressions for the variational para-
meters:

My = he+ Z Jrew S5 (26)

K. =K. V. 27

The magnetization (SZ> and the mean value of square of the spin operator {(S;)*) are
determined by the equations:

OF O0F
S =~ J/, (S = af{". (28)

As it can be seen the adopted approximation leads to the usual results of MFA, but the
anisotropy constant K, depends on temperature via the order parameter n = (@, accord-
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ing to (25) and (27). As a result an additional temperature dependence of {8y and {(SH?>
arises and the renormalization of the temperature of magnetic phase transition appears.

The possibility of change of sign of the effective constant of anisotropy K (T), due
to the temperature dependence of the order parameter #(T), attracts a special interest.
This effect may lead to the reconstruction of a whole magnetic structure of the crystal.
For a ferromagnet the change of sign of the anisotropy constant leads to the transition:
easy axis (K, > 0)-easy plane (K, < 0). For an antiferromagnet the last transition can
be accompanied by the appearance of a weak ferromagnetism, if in the basal plane of the
crystal there arises an additional anisotropic interaction. We will discuss this problem
in some detail.

4. The weak ferromagnetism

In many crystals the sequence of structural and magnetic phase transitions is observed.
For example, in KMnF; crystal two successive structural phase transitions at 7; = 186 K
and at T, = 91.5 K occur [3]. These transitions are connected with the condensation of
soft phonons at the point R (the mode of the symmetry I',5) and at the point M (the mode
of the symmetry M) of the Brillouin zone at T; and T, respectively. The condensation
of these phonons corresponds to the rotations of MnFg octahedra around the tetragonal
axis (common in both transitions) in the opposite directions in adjacent planes (mode
I';5) and in the same direction (mode M), respectively [3]. In this crystal one observes
also two consecutive magnetic phase transitions: an antiferromagnetic (AF) with the anti-
ferromagnetic axis along the tetragonal axis at Ty = 88.3 K and the transition to a weak
ferromagnetic state at T, = 81.5 K. The proximity in the temperature scale of magnetic
and structural phase transitions (at 73) allows us to suppose that the strong influence of
the structural phase transition on the character of magnetic ordering in AF phase may
exist. Indeed, the rotations of MnFg octahedra in structural transition are connected
with their deformation and with the breaking of the cubic symmetry of the crystal field.
This deformation can be described as a single-ion magnetocrystal field of anisotropy,
which depends on the order parameter of the corresponding phase transition. In this
case a uniaxial anisotropy along z-axis appears in the temperature region T, < T < T,
and additionally at T< T, a nonsymmetric in the basal plane field of the single-ion
anisotropy arises.

For the qualitative description of the magnetic phase transition at T < T, we consider
the model of two-sublattices antiferromagnet (x = 1, 2) with the Hamiltonian (6) and the
energy of the spin-phonon interaction of the form

Hg, = 3 IZ b, Q7 (Sie)* - IZ DK[(SE)Z“(S%:)Z], (29)
where for simplicity we can assume, that b, = b, = b and D, = —D, = ¢Q,. Then

using MFA, we introduce the trial Hamiltonian in the simple form

Hso = % My Sy (30)
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For the free energy, analogously to (21), we get

F(T) = Fo(T)+5 Y, JuelSHOLSed+ X (= M) 8> = PN E(CH

E g, DS = (8D (31)

Fo(T)= ~T z InTr [exp {— -% (M- §)}] . (32)

X

where

The effective anisotropy constants are equal to

sz = Kx—";— bx<Q12> = ch——";‘ bn(’72+<u12>)’

Dy = =D, = D(T) = en. (33)

The magnetization of sublattices are determined by the vector (Sgy = 0F o(T)/0M>,
where the molecular field is evaluated from the equations

/. ~
My = h+ Z T {Sur> = 35S {ELSOD+DLUSHD—USHD] (%

Complete analysis of the system of equations (31)~(34) with the account of corresponding
equations for the order parameter 1 = {Q, and for the fluctuation {u}y, describing
structural phase transition, needs numerical calculations. For a qualitative analysis of the
type of magnetic structure for T’ < Ty, we can consider the expression for the free energy
(31) in the low temperature limit (7 < Ty). In this case we can neglect the contribution
of magnetic excitations (spin waves) and take into consideration the ground state energy
only

] 1
&o = lim F(T) = — (Hs+Hgsp)lr=0- (35)
T-0 N

Introducing for the sake of convenience the vectors
= (G, T= 55 (Bd=G) )
we write the ground state energy in the form
&o = (o —BYm® + (A + B — P2 +m2)~2y(L,m, 1 m,), 3N
where we have used the following designations:
A =252, >0, &= -5y >0,
B = (252K = (25)"2(K—% br),
y = (25)22D = (25)*2cy. (38)
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We have also assumed, that K, = K, = K. Taking into account the normalization condi~
tion (for T< Ty) I?+m? = 1,7 -m = 0 and introducing the angular variables determining
the direction of the vectors I and m, we find possible types of the ordering corresponding
to the minimum of the energy (37) (cf., e.g. [9]). The calculations show, that for > 0
the antiferromagnetic state with the vector [ along z-axis and m = 0 is stable. The energy
of this state is given by

&S = —(A +B+). (39)

In the case when B < 0, the antiferromagnetic state with the vector [ in the xy-plane l, = [,

= |11/y/2, I, = 0 has lower energy. The presence of the anisotropy field y in the basal
plane leads to a weak non-collinearity of the vectors (§ 1y and <§2) and therefore to the
weak ferromagnetism

2 -
- ? (2S ° 2D) - — =
= ][ =1- . 0).
I g = =S 71 = Vi=|m| (40)
The energy of this state is equal to
,y2
N = — (SL+a+ L ). ;
&o ( + 7B+ .szl) 41)

Comparing (41) with (39) we can conclude that for (y%/s) > 8, or with an account of
(38), for the value of the order parameter

K

2 2

n(T) > n(T,) )+ B2) (42)
the phase transition (of the first order) from the uniaxial AF state to WF state in the basal
plane does occur.

Therefore, for appropriate relations between the parameters of the model, fulfilling
the condition (42), the phase transition induced by the structural transition is possible.
For a quantitative description of this type transition, occurring in KMnFj, in the framework
of proposed model it is necessary to evaluate more accurately the free energy (31), also
taking into account the temperature dependence of magnetization vectors T(T), m(T) and
of the order parameter n(T) with appropriate description of the phase transition at T,.

5. Final remarks

Model of the spin-phonon system based on concept of the local normal coordinate
O, proposed in the present paper allows one to consider the mutual interrelation between
magnetic phase transition and structural phase transition, driven by a soft mode. The
character of this coupling depends essentially on the form of the spin-phonon interaction
(4) and its magnitude. In particular, an appearance of the terms linear in 0, (cf. (D) leads
to the effective field for structural transition. However, the influence of this field is essential
only for a sufficiently high magnitude of the coupling constants (16).
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The reverse influence of structural transition (at To) on the magnetic one (at T,) is
essential only for Ty > T, and (To—T¢) < T.. Since in the temperature range (To—71) < To,
the order parameter of the structural phase transition y(T) strongly depends on the tempera-
ture, therefore the main change of the characteristics of the magnetic subsystem (e.g. anisot-
ropy constants determining the type of magnetic structure) is possible. In particular, the
model of the spin-phonon interaction (29) allows one to give a qualitative explanation of
AF-WF transition, observed in KMnF;. For a quantitative calculations and for a compari-
son with experimental data, it is necessary to take into account the interaction with acoustic
phonons, describing lattice deformations. The latter problem will be considered elsewhere.

REFERENCES

1] G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Kraynik, R. E. Pasynkov, M. S. Shur,
Ferroelectrics and Antifervoelectrics, Chapter XVII, Nauka, Leningrad 1971 (in Russian).

2] G. A. Gehring, K. A. Gehring, Rep. Progr. Phys. 38, 1 (1975).

{31 M. Hidaka, J. Phys. Soc. Japan 39, 103, 180 (1975); M. Hidaka, N. Ohama, A. Okazaki, H. Saka-
shita, S. Yamakawa, Solid State Commun. 16, 1121 (1975); P. Jakubowski, Acta Phys. Pol. A54,
397 (1978).

4] V. G. Baryakhtar, I. E. Chupis, Int. J. Magn. 5, 337 (1974).

{5] E. M. Yolin, V. N. Kascheev, Fiz. Tverd. Tela 21, 851 (1979).

[6] H. Thomas, Structural Phase Transitions and Soft Modes, eds. E. I. Samuelsen, E. Anderson, J. Feder,
Universiteitsforlaget, Oslo 1971, p. 15; E. Pytte, J. Feder, Phys. Rev. 187, 1077 (1969).

{71 N. M. Plakida, H. Konwent, Magnetism in Metals and Metallic Compounds, eds. J. T. Lopuszabski,
A. Pekalski and J. A. Przystawa, Plenum Press, New York 1976, p. 543.

8] S. Stamenkovic, N. M. Plakida, V. L. Aksienov, T. Siklos, Phys. Rev. B14, 5080 (1976).

{9] T. Moriya, Magnetism, eds. G. T. Rado and H. Suhl, Academic Press, New York 1963, Vol. 1,
p. 86; E. A. Turov, Physical Properties of Magnetically Ordered Crystals, Acad. of Sciences of USSR
Press, Moscow 1963 (in Russian).



