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Thermodynamic properties of simple fluids are calculated using variational theory
for a system of hard-core potential with a two-Yukawa tail. Likewise one Yukawa-tail case
(C. Jedrzejek, G. A. Mansoori, Acta Phys. Pol. A56, 583 (1979)) the working formulas are
analytic. Five parameters of the two Yukawa system are chosen so as to get the best fit to
areal argon potential or an “argon-like” Lennard-Jones potential. The results are fairly
good in light of the extreme simplicity of the method. The discrepancies result from using
the variational method and a different shape of Yukawa type potential in comparison to
the real argon and L-J potentials.

1 Introduction

Equilibrium properties of simple liquids are now very well understood [2]. Therefore,
the focus of interest is now concentrated on more complicated liquid substances ; nonspheri-
cal liquids, polar and ionic liquids, and liquid mixtures. Most methods, however, even
in the simple liquids are complicated. For example some of them, as Barker—Henderson
perturbation method [2] use directly Monte Carlo data for hard-sphere reference systems.
Thus, there is still room for simplifications because some achievements in the simple
liquid theory can hopefully be used in calculations of the properties of more complex
liquid substances.

One hope in this respect is the use of Yukawa type potentials
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where x = r/o, and ¢ 1s the diameter of the hard-core of the molecules. Properties of liquids
interacting through Yukawa type potentials have been widely investigated. There exist
analytic solutions for direct correlation function for this potential in so called mean-
-spherical approximation for single Yukawa [3], generalized later for arbitrary number
of Yukawa functions [4], and for mixture of Yukawa fluids [5].

Yukawa potential is also of interest in liquid metal theory and it appears when certain
approximations are made on the dielectric function e(k). Firey and Ashcroft [6] used the
variational theory for calculation of thermodynamic properties of mixture of ions interacting
via a screened Coulomb potential in a Yukawa form.

Further understanding of Yukawa system properties is due to Henderson et al. [7]
who performed the Monte Carlo computations of thermodynamic properties for one Yuka-
wa potential fluid with z = 1.8 and compared them with many theoretical approximation
methods.

Recently, we applied the variational method [1], which gives most formulae for thermo-
dynamic properties in analytic form, to single negative Yukawa potential with z = 1.8
(henceforth this work will be referred to as I). For this potential the variational method was
equivalent to the first order Zwanzig perturbation theory [8], because variational param-
eter, the diameter of hard cores of Yukawa system, was independent of the temperature
and the ensity.

The aim of the present paper is to apply the previously developed method to the system
with the potential consisting of a hard-core with two Yukawa tails, one positive and the
other negative definite. In this case it is possible to construct potential functions in realistic
forms resembling the true pair potentials. The two Yukawa function potential has five
coefficients which can be used to fit a realistic potential. In this work we investigate various
methods of the fitting to the real argon potential with the understanding that they can
further be used for other substances. Moreover, although two functions Yukawa potential
has five free parametets, its shape has somewhat different nature than for example Barker—
~Fisher-Watts (BFW) potential proven.to be the closest approximate potential to real
argon one. Nevertheless we feel that extreme simplicity due to the form of Yukawa po-
tential and the use of variational method in enough compensation for some lack in accuracy,
particularly for mixtures. Therefore, we report also the formulae for the variational method
with Yukawa.potential for mixtures.

2. Variational method for two Yukawa potentials
A. One component case

According to Mansoori and Canfield [9] the variational Gibbs-Bogoliubov inequality
will be in the following form for two Yukawa functions potential with the hard-sphere

fluid as the reference system
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In this formula A4,, go(r) denote the exact Helmholtz free energy and radial distribution
function, respectively, for the hard-sphere reference system of diameter d and g is the
number density of Yukawa system. The right hand side of inequality (2) is minimized
with respect to d, while ¢,; ¢,, z,, z,, ¢ are assumed to be known. Upon the introduction
of the dimensionless variables x = r/d, ¢ = djo, ¢* = o3, 1= ned?l6 = mp*c3/6 one
obtains

A A .
NkT<NkT Z( 1)’g;e™ dee X gus(X). | 3

Next we proceed in a completely analogous way as in I, i.e. using property that

8
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_1s a known Laplace transform of PY solution for radial distribution function. of hard-
-sphere system (multiplied by x) [10]. After using the Carnahal—-Starhng [11] formula
for A4, and Verlet—-Wels modlﬁcatlon of gus(r) [12] we get
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Here By; = By(n, c, z;) and their form can be found in I. When the gpy(r) is used as the
hard-sphere reference system radial distribution function A{) = A(z) = 0 and the form
of A‘°’ is simpler bacause Gis; n) depends on actual m and not on 7y as in the modified
Verlet-Weis gyw(r) case.’ ; :
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B. The variational method for mixtures

Two Yukawa potential for a mixture is in the following form

OO, _r < 0',-]-

w(r) =14, _ C.. ‘ (10)
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where in denotations used in Eq. (1) 4;; = &’ exp(z}), Ci; = &’ exp(z{}).

Accordingly, the variational inequality takes the form
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where x;; stand for concentrations of the components and 4, can be obtained from the
Mansoori et al. equation of state [13]. Such form is convenient because appearance of
repulsive Yukawa function makes the values of o;; not matter in the variational method,
if they are enough small — they only set up a scale. After some manipulations with the
use of Lebowitz solution of the Percus—Yevick equation for mixtures of hard-spheres with
additive diameters [14]
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where for the explicit form of H,/(s) function, which are available in an analytic form

Hy(s) = Hyls) = Gy fm drrg,(r) exp (—s1) (13)

we refer to the Lebowitz paper [14] (yi = Zé o—_xi) .

The minimization of the rhs of the inequality (12) is with respect to d;; (or in dimension-
less units: ¢;; = dy;fo;). All ¢;; and ¢;; = ¢, © # J, are independent even if the unlike pair
interaction parameters are assumed according to- the rule similar to the Lorentz-Berthelot
one [15]

Ay = (A 4D Ciy=(Cy- Ci)Y2,
1 1 1\? 1 1 1\
5-ts)  mos)
There are also possible more accurate and at the same time more complicated choices, e.g.

Aij = (1 —Ké-) (AiiAj])llzs Cij = (1 "Kg) (Ciicjj)yz'
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3. Determination of the values of the coefficients for two Yukawa functions

It should be stressed that a Yukawa type potential is not based on strong physical
grounds, as Barker et al. (BFW) [16] and Parson et al. [17] potentials. Specifically it decays.
2

in a way different from accepted Z C6+2i—3£7 form. Nevertheless, having five free
=0 g

parameters at disposal one can expect to get a fit good for practical applications, because.

a general shape of the potential is compatible with the shapes of real potentials. We

expect some lack of accuracy in representing a real potential in the Yukawa form is

a small price for a computational convenience.

We checked several methods of fitting the Yukawa potential. A pure fit to second
virial coefficient appeared to be completely unsatisfactory because of extreme multi-
-modality of this optimization. The similar problem has been pointed out in determining
the parameters for Lennard—Jones potential from viscosity data by Vogl and Ahlert [8].
Additionally, such optimization is time consuming because the formula for B,

@©

B, = 2nNg® (%-— j{exp [E;—f; exp [—z;(x—-1]- ki—;x exp [——zz'(x—l)]:l —1} x%dx
1

(16)

is not subjected any simplifications as for example for Lennard-Jones case [19]. Therefore
we exploit two other methods: 1) fitting to the second virial coefficient but with the pre-
viously determined: r,, = the distance between the atoms at the minimum of the potential,
u(r,,) — value of the potential at the minimum, r, — the distance between the atoms for
which u(r,) = 0, 2) fitting directly to the BFW potential [16].

In the first method we cast the potential (1) to the form of Eq. (10)
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Using the following conditions: u(ro) = 0, u(r,,) = &, ——| = 0 the potential can be trans-
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s0 as the attractive part be more long-ranged than repulsive one. This potential is used
to fit the second virial coefficient with the two unknown parameters E and o. Having
determined E.and o the coefficients from Eq. (17) are as follows:

b EmE 1 1 )
"~ E-1 ra—Tro o
14 Dry
L |
E

B==—— 1

rm
4 - 2)

" exp (—Bry)—exp [—ro(B—D)—Dr,]’

C = Aexp[—ro(B-D)]. ' (23)

The calculation of &y, &5, 23, 2, from 4, B, C, D is straightforward. In the second method
the following expression was minimized:

il 2
2 Fi—Tm
R = E (uppw(r:) —uy(Ey, €2, Z1, 225 1) €XP [— ( » ) :l , (24)
. — .

where r, = ¢ and ry = 4r,,. The exponential expression in R with the variance p? is to
account for the importance of the region near minimum -in determining potential. This
kind of fitting involves more arbitrariness than the previous one because depends on the
postulated ¢ and p. It was found that such an overall fit is not satisfactory, because it
cannot properly balance contributions from different r-regions and consequently the
obtained B, values are not good. Therefore, we present the results only for the first method.
The experimental data for B, were taken from Byrne et al. [20], Whalley et al. [21], and
Michels et al. [22, 23]. All points below 103 K ‘were discarded since there is good evidence
(Hanley et al. [24]) that the experimental B, are in error in low temperatures. Furthermore,
as the potential used has a hard-core it is not possible to account for quantum correction
for ‘B,, which becomes important in lower temperatures, in a simple way (ordinary /4
expansion is not valid [25]). Hence, using the data with minimal quantum correction is
justified. In all cases we used 33 B, experimental points to fitting.

Aside from fitting Yukawa potential to real argon one we did the same fit for Lennard—
~Jones potential, for which there exist extensive body of computer symulation and different
approximation theories data. We chose the values ¢ = 119.8 K, ¢ = 3.405 A for which
L-J potential is a good effective potential for real argon [2]. In Table I we present the
values of parameters of Yukawa potential which give the best values of second virial
coefficients. In Fig. 1 the shapes of such fitted potentials, uy(r) are compared with the
shapes of BFW L-J potentials, respectively. In both cases Yukawa potential is steeper,
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TABLE 1

The parameters obtained through fitting Yukawa potential, Eq. (1), to BFW (real argon) and L-J
potentials [2]

&1 &2 Number
| —k— 7 21 Za (22 IKMSa Of data
BEW 1 782.95 6170.7 2.6558 11.1180 | 2.7018 0.8 33
2 1332.20 | 36073.0 2.2628 9.5376 2.3121 1.0 33
1L-J
(e = 119.8K, ‘
o = 3.405 A) 468.74 4090.5 2.1786 | 12.1720 2.7988 1.6 33

1 .
"RMS = | E (BS™P—Bfity2,

i=1

10000 —

1000

u(r)/k (Kelvin)

-100

Fig. 1. The pair energy u(r) for argon:
according to Eqgs. (18); dashed line, L-J potential (¢ = 119.8K, ¢ = 3.405 A);
potential

100

3.03.54.04.55.05.56.0
r(A)

BFW potential [16]; solid curve, uy(r) fitted to ugpw(r)

, uy(r) fitted to L-J

for ro < r < ry goes outside and falls off faster in comparison with the corresponding
BFW of L-J potential. The differences between a and b versions of uy(r) from Table I
fitted to Ugpw(r) are not distinguishable in the scale of Fig. 1.
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4. Numerical results

In order to check out the sensitivity of thermodynamic properties on the shape of the
potential we first calculated the Helmholtz free energy and the pressure through variational
method using two Yukawa functions potential, uy(r) fitted to u;_,(r). These results were

TABLE 1I
Values of A/NkpT for 6-12 potential
: Yukawa Pot. | Yuk: Pot.
kgT]e go® Simul.? BH1 BH2 [Var. (PY){Var. (VW) Va:.W?PY(; Varaw(?lv&?)
— — 1 -

2.74 0.60 -0.34 —0.31 -033 | -0.19 —0.18 —-0.19 -0.18
0.70 +0.01 +0.02 +0.01 +0.20 | +021 0.19 0.21
0.80 0.43 0.46 0.42 0.65 0.69 0.65 0.69
0.90 0.93 0.99 0.95 1.21 1.27 1.22 1.28
1.00 1.59 1.66 1.62 1.92 2.01 1.93 2.02
1.35 0.60 -1.77 —1.65 -1.75 -1.59 —-1.57 -1.60 —1.59
0.70 —1.65 —1.51 —1.63 —1.42 —-1.39 —-1.43 —1.60
0.80 —-141 —1.26 —1.41 -1.13 | -1.07 —1.14 -1.04
0.90 -~1.02 -0.84 —1.01 -0.67 —0.57 —0.68 -0.58
0.95 -0.72 —0.55 —-0.72 —-0.35 —0.23 -0.36 -0.24
1.15 0.60 —2.99 -2.15 —2.30 —2.10 -2.09 -2.12 -2.11
0.70 —-2.25 ~2.10 —-2.26 —-2.02 —~1.99 -2.04 —-2.01
0.80 -2.06 -1.92 -2.10 -1.81 -1.74 -1.82 —1.76
0.90 -1.79 -1.56 | —1.76 —~1.40 —-1.29 —141 | -1.31
0.75 060 | —4.24 -3.99 —429 | —4.01 -~3.99 —~4.05 —4,03
0.70 —4.53 —4.26 —4.28 ~4.24 —-4.24 -4.31 ~4,27
0.80 ~4.69 | —4.37 —4.74 —4.38 -4.30 —4.40 —4.32
0.90 | —4.26 —4.67 —4.22 —~4.08 —4.23 —4.09

2 Verlet and Levesque (1967), Verlet (1967), Levesque and Verlet (1969), Hansen and Verlet (1969).

compared with the variational calculations for Lennard-Jones potential, other approxima-
tion theories results and Monte Carlo data [2]. From the results of Tables II and III it can
be seen that despite the certain difference in shape, uy(r) gives almost the same values of
free energy and pressure as corresponding #;_; potential, if the variational theory is used.
This indicates that two Yukawa functions potential can be useful as model potential in
calculations of thermodynamic properties, provided its parameters are -appropriately
chosen. That the variational theory give worse results than perturbation theories, when a po-
tential with hard core is used as reference potential, is due to the fact that the shape of the
‘potential for » < d has no meaning in the variational method, while in the other methods
it serves for the determination of the most appropriate d. The results are worse, when
improved Verlet-Weis gyw (r) is used instead of gpy(r).
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TABLE 111
Values of pV/NkpT for 6-12 potential
Yukawa Pot.
kpT]e oo® Simul® [Simul®, BHI BH2 |Var. (PY)|Var. (YW)
. Var. (PY)Var. (VW)
— S B
2.74 0.65 2.22 2.24 2.22 2.48 2.54 2.49 2,56
0.75 3.05 3.14 3.10 3.33 3.54 345 3.57
0.85 4,38 4.48 4.44 4.79 4.98 4.83 5.02
0.95 6.15 6.41 6.40 6.69 6.97 6.76 7.04
1.35 0.10 0.72 0.77 0.74 0.78 0.78 0.77 0.77
0.20 0.50 0.55 0.52 0.56 0.56 0.55 0.55
0.30 0.35 0.39 0.36 0.39 0.39 0.38 0.38
0.40 0.27 0.26 0.26 0.31 0.32 0.30 0.31
0.50 0.30 0.31 0.27 0.39 0.43 0.39 0.42
0.55 0.41 0.43 0.35 0.53 0.58 0.53 0.58
0.65 0.80 0.91 0.74 1.08 1.19 1.09 1.20
0.75 1.73 1.87 1.64 2.14 2.34 2.16 2.36
0.85 3.37 3.54 3.36 3.92 4.24 395 4.27
0.95 6.32 6.21 6.32 6.67 7.16 6.72 7.20
1.00 0.65 —-0.25 —-0.21 —0.36 -0.10 +0.04 —0.08 0.05
0.75 +0.58 048 | +0.71 +0.53 +0.95 1.20 0.98 1.22
0.85 2.27 2.23 2.48 2.25 2.90 3.32 2.94 3.35
0.90 ~3.50 3.79 3.53 4.34 4.84 ! 4.39 4.88
0.72 0.85 0.40 0.25 0.70 | 0.25 1.05 1.59 1.11 1.62
0.90 ~1.60 215 | 1.63 | 273 3.39 2.77 341

2 Verlet and Levesque (1967), Verlet (1967), Levesque and Verlet (1969).
b McDonald and Singer (1969).

Next, we calculated the internal energy and pressure for real argon using two different
Yukawa potentials, with parameters given in Table I, fitted to BFW potential [16] to make
calculations which are directly comparable with experimental results three-body interac-
tions together with a pair potential have to be included. Therefore, we minimized

0

f drrgyus(PNuy(r)+ Az ) (25)
NkT

A 2
A<o e

+
NkT ~ NkT ' kT
d

where —]%i——;; has the following analytic form derived by Barker et al. (see [26]) through

Pade approximation

Ay, vq® 0.87748+11.76739n—4.200274>

= 26
NEKT  kTd®>  1-1.127894+0.73166x° (26)
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TABLE 1V
Calculated (variational method for Yukawa potential), experimental and BH2 [2] internal energies for
fluid . argon
Ucal
4 T =i == SSESE U Uexp
¥ (cm®/mole) K Var. (PY) Var. (VW) (BH2) | (caljmole)
a b a } b
: Fluid on melting line
23.66 180.15 —1277 —1281 | —1243 —1247 —1297
22.96 197.78 —127 —1221 —1176 —-1181- —-1235
23.10° 201.32 —1210 —1214 -1171 —1175 —1236
21.31" 273.11 —899 —903 —839 —844 —940-
21.09; 273.11 —875 —880 —813 —818 —924
2046 323.14 —637 — 642, —564 | —569 —664
Fluid )
27.04 100.00 -1411 —-1414 —1396 | —1400 — 1423 —1432
29.66 100.00 —1303 —1306 —1299 —1298 —1313 -~1324
30.65 140.00 —1198 —1200 —1190 —1193 —-1213 —1209
39.36 140.00 —1042 —1044 —1039 —1042 —1061 — 1069
41.79 140.00 —869 —871 —870 —872 —906 —922
48.39 150.87 —731 ~734 —733 -1735 —784" —1789
..57.46 150.87 —603 —604 —604 | -~ 606 —679 — 689
_70.73 - 15087 | —477 —478 —478 —480 ~573 —-591
91.94 150.87 —356 -~ 357 —357 —358 —~462 —481
TABLE V
Calculéted (variational method for Yukawa potential), experimental and BH?2 [2] ‘pressures for fluid argon
P cal(bar)
4 T L AR D DPexp
{cm?/mole) K Var. (PY) Var. (VW) (BH2) (bar)
a b a b
Fluid on melting line
23.66 180.15 5570 5565 5920 5915 4907 4999
© 22,96 197.78 7110 7105 7520 7514 6319 6140
23.10 201.32 6993 6988 7393 7388 6143 6335
21.31 273.11 13159 13150 13765 13762 11645 11380
21.09 273.11 13821 13817 14461 | 14458 12585
20.46 323.14 17743 17742 | 18500 | 18500 15513 15354
Fluid
27.04 100.00 886 881 | 1051 1046 655 661
29.66 100.00 241 238 395 342, 118 106
30.65 140.00 779 775 874 870 588 591 .
39.36 140.00 259 256 303 300 470 480
41.79 140.00 50 48 67 65 18 37
48.39 150.87 60 58 67 65 54 62
57.46 150.87 43 41 44 43 58 51
70.73 150.87 47 46 47 46 50 50
91.94 150.87 54 54 54 54 50 50
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- : 'y » _ TABLE VI
Contribution to the internal energy of argon calculated through the variational ‘method for Yukawa
potential, Var. (PY)

. v : UQb) U U@2b) ‘ U | U

(cm®/mole) — - _ (BH2) (BH2) |(cal/mole)
: : a b a b
27.04 100.00 —1489 —1493 — 1411 ’ — 1413 —1525 :‘ —1423 —1432
29.66 100.00 —1364 —1367 —1303 —~1306 —1394 —1313 —1329
30.65 100.00 —1278 -—1281 —1198 —1200 —-1285 ~1213 —1209
41.79 140.00 ~ 895 — 898 — 869 ‘ — 871 — 951 — 906 - 922
70.73 150.87 | — 484 | — 486 | — 477 | — 478 | — 604 | — 573 | — 591
TABLE VII
Contribution to the pressure of argon calculated through the variational method for Yukawa potential,
Var. (PY)
v T p(2b) r4 p(2b) P
{cm®/mole) K == T 7 ®BH2) (BH2) Dexp(atm)
: a b a l b
— [ | %__ =
27.04 100.00 540 535 898 893 240 646 652
29.66 100.00 2 -2 244 241 —148 116 105
30.65 140.00 652 648 | 789 784 +349 580 583
41.79 | 140.00 —19 ~21 51 49 —34 18 37
70.73 | 150.87 36 35 48 47 | +35 49 49

We used for v the value v = 73.2 - 10-° J-m® [26]. Quantum corrections which are small
for argon were neglected. In Table IV the internal energy and in Table V the pressure
were calculated through variational method are presented and compared with Barker—
~Henderson BH2 theory results and experimental data. In Tables VI and VII are shown
the contributions from two body potential to the internal energy and to the pressure.
These results illustrate that generally calculated pressure is higher than experimental one,
With pyw > ppy. There are practically no differences between the results obtained using
two different sets of Yukawa potential parameters from Table I.

5. Conclusions

In this paper we calculated the properties of real argon using the two Yukawa function
potential. When the variational method is applied for such potential the thermodynamic
quantities have analytic forms. The results obtained are worse than the results of very
much more effort and time consuming methods (with exception of BH2, which uses func-
tions fitted to Monte Carlo simulation [2]), but not very different from experimental data.
The attempt of fitting the Yukawa potential to the potentials of real substances was dictated
not only by the needs of variational theory but can be useful for using Yukawa type po-
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tentials in other approximation schemes, e.g. MSA or GMSA methods [27]. The most
promising application of the presented approach should be for mixtures for which it is
known the variational method gives good excess properties [15]. Then the simplicity of
the method is a prevailing factor particularly because the procedure of adjusting the
u(r), i # j, potential parameters is crucial. This makes the theories without fitted param-
eters, the theories with fitted parameters. As a result some less satisfactory theories can
be brought into agreement with experiment by using a reasonable values of u;/(r) param-
eters.
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