Vol. A56 (1979) ACTA PHYSICA POLONICA No 6

GROUP THEORETICAL ARGUMENTS ON THE LANDAU
THEORY OF SECOND-ORDER PHASE TRANSITIONS APPLIED
TO THE PHASE TRANSITIONS IN SOME LIQUID CRYSTALS*

By K. Ro$ciszewski

Institute of Physics, Jagellonian University, Cracow®**
( Received April 11, 1979)

The phase transitions between liquids and several of the simplest liquid crystalline:
phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied
from the point of view of the group-theoretical arguments of Landau theory. It was shown
that the only possible candidates for second-order phase transitions are those between nematic:
and smectic A, between centrosymmetric riematic and smectic C and between centrosymmetric
smectic A and smectic C. Simple types of density functions for liquid crystalline phases are
proposed.

1. Introduction

It is well established that ordinary liquids composed of complicated molecules fre-
quently form liquid crystaline phases when cooled. There are many types and subtypes.
of liquid crystals among which the simplest, or the most common, are nematics, cholesterics,
smectics A and C. Here we consider only the simplest phases of smectics, i.c., de Vries
smectic 4, and smectic C, [1, 2]. Phase transitions between liquid and liquid crystalline
phases or between two liquid crystalline phases are associated with a change of symmetry
introduced by directional or positional ordering of molecules. The first attempt to apply
group theoretical arguments of the Landau theory to predict the order of the phase transi-
tions mentioned above was that by Goshen et al. [3]. In a very brief report they showed
that a phase transition from an ordinary liquid to a liquid crystalline phase should be of
the first order. Their proof, except for some small details, is basically correct. Then, there

* Part of this work was done during the author’s stay at the International Centre for Theoreticak
Physics, Trieste, Italy.
** Address: Instytut Fizyki UJ, Reymonta 4, 30-059 Krakow, Poland.
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followed two other papers [4, 5] which dealt with similar problems (smectic A to smectic C
transitions).

One purpose of this paper is to extens the results of papers [3-5] to study phase transi-
tions between different liquid crystalline phases. A second purpose is to present the older
results more explicitly.

Our starting point will be a short summary of group-theoretical aspects of the Landau
theory [6-12]. Before doing this it is necessary to stress that the group-theoretical arguments
are not equivalent to the minimalization of the termodynamic potential and therefore
are not conclusive [10]. All the group-theoretical rules are simply the necessary conditions
for a second-order phase transition to occur. If they are violated we can conclude that the
phase transition must be of the first order. If, however, they are fulfilled we can only say
that there is a possibility that a given phase transition may be of the second order. The
final answer can be given only after the investigation of the thermodynamic potential.

In this paper we will not investigate the problem of finding the minima of the potential
as the problem would be at least very lenghty and laborious [4, 24, 28]. We will simply
apply the rules (given below) to the known symmetries of high and low temperature phases
of liquid crystals and we will find which phase transition must occur as the first order
transition.

The group theoretical rules are as follows: Suppose that a space symmetry group of

a certain phase is Go. As a result of a phase transition we obtain a new phase with a sym-
metry group G,;. The necessary conditions for the phase transition to be continuous.
{Second order pase transition is another very common but not very precise. term). These
are as follows: R. 1. Go D G, i.e. G, is subgroup of Go.
R. 2. The density function of the pkase with symmetry group G, is 0o and the density
function of the phase with the symmetry group G is 00+080. The function d¢ is a linear
combination of the basis functions of a single irreducible (or physically irreducible) repre-
sentation D*(G,) of the group G,. k and n are star and the index of the representation.
R. 2’. The rule R. 2 can be relaxed somewhat. §¢ may consist of a linear combination of
the basis functions belonging to D*'(G,) and to another different representation, D¥"(Go)
[29-31]. The point is, however, that whereas the scalar value 5 of the order parameter
associated with the representation D*(G,) is very small near the phase transition point,
the scalar valde of the order parameter associated with D*"(G,) is of the order 7 i.e.,
it is practically negligible in comparison with 7. For details see Appendix B and Appendix C.
‘We will call the order parameter associated with the representation D*(G,) — a primary
order parameter and the second one associated with D¥"(G,) — a secondary order
parameter.

Instead of one additional D¥™(G) there can be a few such representations. Here for
simplicity we consider the case of only one D*"(G,). The general case does not involve
any qualitative differences.

R. 3. The symmetrized cube, {D*'(G,)}*, must not contain D°(G,) — totally symmetrical
representation of Gy.

R. 4. D"(G,) | G, which is a representation obtained when the representation D*(G,)
of G, is restricted to G, must contain the totally symmetric representation of G .
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R. 4'. If D"(G,) is one dimensional or if D*(G,) “subduces” only multiple of totally
symmetric representation of G, then G, is normal in G, [9].
R. 4”. Chain subduction criterion’,

If GoD Gy D Gy and D*(G,) | G, contains the totally symmetrical representation
of Gy ¢ times and D*'(G,)|G contains the totally symmetrical representation of G, also ¢
times, then the continuous transition G, —> G is not possible.

R. 5. D*(G,) corresponds to a physical tensor field [8, 9].
R. 6. Weak Lifshitz condition [12]:

([D"(Go)*ID*(Go)) = m,

where [D™(Go)J? is the antisymmetrical square of D*(G,), DY(G,) is the vector representa-
tion of Gy, (D | D') denotes the scalar product of the characters of the two representations
D, D' and m is a number of degrees of freedom of the representation D*(G,) i.e.,

(a) if k point is in a general position, then m = 3,

(b) if k point is in a general position on certain symmetry plains, then m = 2,

(©) if k point is in a general position on certain symmetry axes, then m = 1,

(d) if, however, the star k belongs to a physically irreducible representation then m
from the point (¢) is equal to zero,

(¢) if & point is in a special position, for example & = 0 then m = 0; in this case we
bave the original Lifshitz condition [6, 7].

R.7. If besides D*'(G,) there is also the second representation, D¥"(G,), responsible for
a phase transition (see the point R.2’) then:

(a) the representation D*(G,) must fulfill the conditions of R. 1-R. 4’

(b) the representation D*(G,) does not need to fulfill the condition R. 4",

(¢) the representation D*"(G,) must fulfill the conditions of R.4 and R. 4,

(d) the reducible representation D = D*(G,)+D*™(G,), must fulfill the weak Lifshitz
condition which in the “spirit” of paper [12] we formulate as follows: the representation
[DF ®D"(G,) contains the identity representation, D%(G,), exactly as many times as is a
number of degrees of freedom of the representation D [12]. To clarify this point we
use a very simple example. If D = D*(Go)+D*"(G,) and if k # 0, k' = O then exactly
as in R. 6 we have:

([D"(G)’ID'(G)) = m,
where m is a number of degrees of freedom of the representation D', There is also
the second condition: .
(D*"(Gy) IDY(Gp)) = 0
and finally the third condition

(D(Go)®D*™(Gy) ID'(Gy)) = 0

which, however, is satisfied authomatically (k+%’ s 0).
(¢) The modified chain subduction criterion?.

1 Just recently, it has been shown that the chain subduction criterion is not exactly equivalent to the
necessary condition based on the original Landau theory [33]. Fortunately, in the following, we will not
encounter any case where it would be absolutely necessaty to apply this criterion.
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In the spirit of papers [8, 11] we can formulate this for the reducible representation
D exactly as we did for the single representation D*(G,) in the point R.4". The other
equivalent formulation is as follows. If each of the representations D*(G,) and D¥™(G,)
fulfilles the normal chain subduction criterion in R. 4’ then the second order phase transi-
tion G, — G is eliminated.

If one of the conditions in R. 1-R. 7 is not fulfilled then the phase transition associated
with the symmetry change G, -» G; cannot be of the second order and therefore must
be of the first order. ,

In the following sections we will determine whether the Landau conditions in R. 1-R. 7
are fulfilled for all phase transitions which can occur within the group such as normal
liquids, nematics, cholesterics, smectics A and C.

2. The irreducible representations of the symmetry group of a normal liquid

The symmetry group, Gy, of the isotropic noncentrosymmetric liquid is R; A Ts.
R, isthe three dimensional rotation group and T, is the three dimensional translation group,
Adenotes semi-direct product and (R; ® I) A T is for a centrosymmetric liquid while 7 is
an inversion group. A liquid which is composed of equal mixtures of left and right handed
molecules can be treated as centrosymmetric.

The irreducible representations of Gy, are well known [14-16]. Here we will, however,
introduce them somewhat differently than in [14-16]. Our approach will be analogous to
the classical approach for space groups (Koster [13]).

2.1. The irreducible representéti‘ons of Ry AT,

We will construct them in the space of continuous and bounded functions f(r, r)?
where r is the centre of the mass position vector of a certain object such as a molecule or
a cluster of molecules and ¥ is unit vector which gives an orientation of the object. In the
case when one unit vector is not enough to describe the orientation of the object we can
consider the space of f(r, ») functions, where @ are Euler angles [17-19] describing the
object’s orientation with respect to a fixed laboratory frame.

The left regular representation of Ry A T3 is defined by:

{olt} f(r, ¥) = flo” ' (r—1), 0" 'F) Q.1

where { | £} is an operator of coordinate transformation; e is an operator corresponding
to the rotational part of the coordinate transformation and ¢ is a translation vector.
The regular representation can be decomposed into the sum of all “unitary” irreducible
representations of Gy,
According to [6, 13] to construct an irreducible representation of Gj, we must choose
one particular vector, k, in the reciprocal space, form the star of k (i.e., the set of all vectors

2 We omit the rigorous mathematical discussion. It is enough to know that the orthogonal basis in
the space is fi,1m(r, ¥) = exp (i k - )Y (6, @). The orthogonality relations are:
oy mY @

§ fimts D1 e, ¥)d?rd (cos 6) dp = 6(k, K)01,10mm-
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wk which in our case is the surface of the sphere of the radius k = |k|) and choose one
of irreducible representations of group # of the k vector. 2 is the subgroup of operation
of G, which do not change % or add to & a vector of reciprocal lattice. In the case of Gy,
A 1s the subgroup of operations which do not change k at all. The rotational part of %
contains all rotations around the axis of the % vector.

| Any irreducible representation D*"(Is) of Gy, has two important parameters: k — that
of the star, and m — that of the chosen irreducible representation of .

One particular basis function is enough to generate all the others. It is easy to find

the form of such a function for D*"(Is). It is

exp (ik, )Y, (r) = exp (ik, )Y (8, &), (2.2)

where k, = (0,0, k), Y, is an ordinary spherical harmonics. The index m is the relevant
one, and / can take any value — for fixed m and different / we always obtain the same
irreducible representation D*"(Is).

All the representations D*"*(Is) are irreducible. Only D°(Is) is reducible and can be
decomposed into the sum of the weli known irreducible representations, D', of the group R,
[17-20].

2.2. The irreducible representations of Rs @) AT,

In the present case #" — the symmetry group of the vector &k contains not only all the
rotations around % but reflections as well. This means that if we omit the translational
group for simplicity, we pass from the C,, group to C,,,. The notation is that of Schoenflis.
In the former case of C,, (for Ry A T3) the functions exp (im@) and exp (—im@) (or Y, and
YL,) belong to the different irreducible representations of 4", and now for C,, the pair,
exp (img), exp (—img), belongs to the same irreducible representation. Keeping this in
mind it is clear that for & # 0 the irreducible representations of (Rs ® I) A Tjare: D*"(Is/c)
with a representative pair of basis functions exp (ik,r)Y Lms D7 (Is/c) with basis function
exp (ikr) or exp (ik,1)Y3' (the basis functions are invariant under inversion), D**~(Is/c)
with the basis function exp (ik,r)Y, 3'* 1 (the basis function changes its sign under inversion).
Subscript *“/c” stands for “centrosymmetric”.

For k = 0 the irreducible representations of Gy, coincide with those of R, ® I,
i.e., with the representations D'*, D'~ [17, 19]. Superscripts + and — distinguish representa-
tions for which basis functions are invariant under inversion or change sign under inversion,
respectively.

3. The phase transitions from isotropic liquids to liquid crystalline DPhases
3.1. The symmetry groups of liquid crystalline phases

As we already mentioned we will study the simplest nematic, cholesteric and de Vries
A, and C, smectic liquid crystals [23, 25]. For simplicity we only consider in this section
noncentrosymmetric liquids. ’

(@) The symmetry group of a nematic liquid crystal consists of the semidirect product
of the D, point group and 7T} is the three dimensional translation group.
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(b) The symmetry of cholesteric liquid crystal can be described by the following
construction: we take a plane, 7o, and on it we have normal nematic symmetry, that is the
nematic director is parallel to the plane. Then there is a screw axis:perpendicular to this
plane. The arrangement of the molecules on.any other plane, =, which is perpendicular
to the screw axis, is almost the same as the arrangement on 7,. The only difference is that
the nematic director on the plane 7 is rotated with respect to the nematic director on the
plane m,. The angle of the rotation is proportional to the distance between = and 7.

(c) The symmetry group of smectic A, liquid crystal is similar to that for the nematic
liquid crystal with the exception that the allowed translations parallel to the nematic
director (or with the axis C,.) form a one dimensional crystal lattice having a period which
is called “the interlayer distance”.

(d) Finally smectic C, symmetry can be obtained from smectic A, symmetry by uni-
formly tilting all the directors on the smectic planes.

The optical modeling of the above liquid crystals is schematically sketched in Fig. 1.

_.///_ T’///T/
AR 557 A LLLL| 7/
W ZZZEE 7 wawaiy
NN s Iy 4
/) llll o \\\'\,v"\' H Y/
FEE w[w HHETY Y/
nematic cholesteric ’ smectic A smectic C

Fig. 1. The optical modeling of liquid crystals [1, 2, 25, 28]

3.2. The phase transition: isotropic to nematic

We write Gy, = Gy or Gy, = Gyj. Where Gy denotes the symmetry group of the
nematic. The meaning of “c” is the same as above.

The infinitesimal change 8¢ of g, — isotropic liquid density function, which leads to
the symmetry change Gj, — Gy should be

So = nY2(0, @)+ const * Yo (0, )+ .. 3.1

y is a small parameter connected with the primary nematic order parameter. The representa-
tion D? for Ry A Ts or D>+ for (Rs ® I) A T are the active representations. Checking
the conditions of R. 1-R. 7 we immediately find that condition R. 3 is not fulfilled [3].
Indeed D? contains an invariant. It is

202 2\ y2y2yp2
Z(ml m, m3> leYmZYm3’ (32)

m

where (2 fn 2m >den0tes the 3j symbol [21, 22]. Similarly, D* contains an invariant, etc.
U2 3]

The phase transition: isotropic to nematic in both centrosymmetric and noncentro-
symmetric liquids must be of the first order.
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3.3. The phase transition: isotropic to smectic A
We write Gy, — Ggsa or for centrosymmetric liquids Gy, — Gsaje- The only allowed
form which possibly could lead to second order phase transition according to reference
[3] is:
d¢ = n Re (exp (ik, - NY3(0, §)), (3.3)

where Re(z) is the real part of a complex z. We will discuss the form (3.3) but we will also.
show that the choice (3.3) is not a proper choice for a Gy, — Gsy second-order phase transi-

tion.
In the case of Gy, — Gsa, ¢ belongs to D*(Is) and when Gy, — Gsajes 00 belongs

to D***(Is/c). What the authors of reference [3] did not consider in detail is the model
of SA induced by d¢ of the form (3.3) i.e., :

80 = n cos (k2) Y20, ). G4y

The model should be like this: in the smectic layers when cos (kz) > 0 there is a nematic
order, the probability for the molecules to be parallel with the z axis is higher than for the
other directions. In the interlayers, however, when cos (kz) < 0 the molecules are instead
perpendicular to the z axis.

In addition, for such a model, the angle independent density function does not depend

on r because:
§ Sod(cos O)dp = 0. - (3.5)

Such a model of SA certainly does not belong to the class of models of liquid crystals that
people generally accept (compare this to Fig. 1). To end the discussion of form (3.3) we
note that for the representations {D*’(Is)}* and {D***(Is/c)}* invariants do exist. As an
example we can take [3]:

exp {i(k; +k,+k3)r} =1, (3.6)

where k; +k,+k; = 0 and k,, k,, k5 all belong to the same star. This is why the authors
of reference [3] concluded that the Gy, — G, phase transition must be of the first order.
Now we will show which is the proper choice for dg. The form of d¢ which is possible,
is simply:
8¢ = 1 cos (kz)+const n>Y2(6, &) (3.7)
or
8¢ = nY;(f, $)+const n* - cos (kz) (3.7)
with the two dependent order parameters.[29]: the primary one, which is of the order n and
the secondary one of the order #2.
Studying the terms of the order n we see that in both cases the third order invariants

in the symmetrized cubes of the appropriate representations do exist and consequently
the phase transition must be of the first order.
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3.4. The phase transition: isotropic to cholesteric (Gi — Gep)

We consider only noncentrosymmetric liquids because only for such is a cholesteric
phase possible [26].

The authors of reference [3] consider the representation D*¥*(Is) as the only candidate
which possibly could lead to a second-order phase transition. The form of §¢ consistent
with D*2(Is) would be

80 = n Re {exp (ékz - )Y2(0, 3)} = n sin® (0) cos (kz +2§). (3.8)

Such a form, however, in spite of sinusoidal modulation of the desity function, g,
would lead to an unacceptable model of a cholesteric phase. In fact, such a phase would
not be cholesteric at all because when cos (kz+2¢) > 0 the molecules tend to be per-
pendicular to the z axis but when cos (kz+2¢) < O they tend to be parallel instead. Even
allowing that such a peculiar non-cholesteric liquid crystalline phase is possible we still
find that the phase transition under consideration must be of the first order (see
Appendix A).

In reality to study the second-order phase transition from isotropic to cholesteric
it is necessary to consider different ¢, i.e., having the form:

S0 = nsin®§ - cos® (kz+ ). '(3.8")

Such a ¢ has all the desired characteristics necessary to describe the cholesteric phase
(Fig. 1). However, one can easilly check that ¢ is a combination of basis functions of the
physically irreducible representation D?**(Is) and of the representation D?. The appropriate
order parameters are of the same order — rule R. 2 (and R. 2’) is violated. Consequently,
the phase transition must be of the first order.

3.5. The phase transition: isotropic to smectic C (G = Gsc o1 Gigje = Gscyo)

We consider only “normal SC” (de Vries C, [23, 24]). This phase transition was not
studied by the authors of [3].
Looking at Fig. 1 it is easy to sec that the acceptable form of g is:

8¢ = 1 Re {exp (ik, - 1)} +const {3, Do(0, *, Y0, §)— Y5 (0, &)} (3.9)

or

S0 = (Y, D%(0, 1, 0)Y, — Yo} +1” const Re {exp (ik. - 1)}, (3,9

where the first term in (3.9) (and the second in (3.9)) describes a density modulation from
one smectic layer to another and the second term describes the development of a uniform
tilt of all the molecules. Functions D%, are well known Wigner spherical rotator functions
[17-20]. Their arguments are three Euler angles. The second term of (3.9) has a maximum
which can be obtained from the nematic maximum (at § = 0 i.e., the nematic director
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is parallel to the z axis) by rotation around the y axis by an angle #?, which is called the
tilt angle. 6o having the form (3.9) and (3.9") are composed of basis functions of the irredu-
cible representation D*°(Is) and of the irreducible representation D? (for noncentrosymme-
tric liquids). Both forms are such that they do agree with the conditions of R. 2'.

As in the part 2.4 we find that the third order symmetric invariants for the representa-
tions associated with the primary order parameters.(the terms of order ) do exist and there-
fore the phase transition must be of the first order.

4. The density functions for nematics, cholesterics, and smectics A and C

Using a similar way of reasoning as in part 3 we obtain the density functions for
nematic, cholesteric and smectic A and C phases in the form of expansions in basis functions
of the irreducible representations of R; A T3. In the following we will treat only noncentro-
symmetric liquids — the modifications for centrosymmetric liquids are trivial.

For nematic liquids:

On = ZI szYoﬂ(ga @), 4.1

€ 29

where the letters “c” denote the expansion coefficients.
For smectics A (de Vries A,):

@sA = {Z ¢, cos (kozn)} {EI: EZIYOZI(Q; @)} 4.2)

The terms of the type sin (kozn) are absent because gg, must be invariant under a two-fold
rotation: x > —Xx, y —> y, z - —Z.
For smectics C (de Vries C,):

asc = {2 ¢, cos (kozn)} {,Z D00, B, 0)Y,2(0, §)}. (4.3)

For cholesteric liquid crystals the explicif expansion in basis functions is difficult to obtain
The simplest model for g, as we already know is:

Och = const+# const’ - sin? (0)  cos® (koz + @) 4.9

(the representations D***(Is), D? and D°).
The more realistic model for g, would be:

Ocn = lz ClD,%,i)(O, koy, 0) Y,:’(é, @). (4.5)

Unfortunately, a single term in (4.5) is not a single basis function. Nevertheless, it is easy
to understand the way of constructing (4.5). We start from gy in the form (4.1) and then
rotate gy around the y axis. For a fixed y and for arbitrary x, z (on the plane y = const)
we obtain a nematic order. The orientation of the nematic director depends on y and
changes from plane to plane. The cholesteric pitch is equal to 2n/k,.
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5. The irreducible representations of the symmetry group of the nematic phase

The symmetry group Gy of the nematic phase is Dy, A T, for noncentrosymmetric
liquids or (D, ® I) A T for centrosymmetric liquids.

5.1. The irreducible representations. of D, A T;.

We will not repeat all the considerations of Section 2 here. The final results are as

follows:
For the star with points in a general position (the rotational part of %" is identity)
we have the representation D¥(N) with a representative basis function

exp (ik, * r), (CR))

where k, is one of the k vectors which belong to the star. The star is now composed of
all k vectors which fulfill equations: k, = =+ |ky,|, k2+k2 = ki, +k3, ie., the ends of the
k vectors form two circles.

For the star with k perpendicular to the C,, rotation axis (to denote that k is per-
pendicular to C,, we will write k) the rotational part of " is C, group with two irreducible
representations. Therefore we now have two types of irreducible representations of

Gy: D (N) and D' ™(N). Two representative basis functions are:

exp (ik, - 1) Yo (0, ). 5.2)

The vector k, L C, and k, = 0, 1 is even for D+ (N) and [ is odd for D1~ (N). (Indeed
we can easily check that by rotating Y} around the y axis by angle = we obtain (— 1) Yl)

For k parallel with the C,, axis (we will write k) the star consists of only two vectors
and k is invariant under the whole C,, group. The basis functions of one dimensional
representations of Cy, are exp (im@) or YL(8, §) for Cy||z. Therefore, we obtain the irredu-~
cible representations, DFI™(N) of D, A Ts, with the basis functions

exp (ik, - WY (0, §). (5.3)

One has to remember that the index ] is an irrelevant one.

For the star with k = O the irreducible representations of Dy, A T3 coincide with
those of the D, group (4,, 4, are one dimensional representations and E,, E,, etc. are
two dimensional representations [27] of the D, group).

52. The irreducible representations of (D, @ I) A T3

For k in a general position we have the representations D**(N/c) and D¥~(N/c). Signs +
and — represent basis functions that are even and odd under reflexion which is contained
in the 2 subgroup.

For k, we have representations, D**(N/c), D*}(N/c), DMP2(NJe), and D*P3(N/c)
because the rotational part of % coincides with the Cy, point group with 4 irreducible
representations: the identity one (+), and three other, one dimensional representations
(b1, b2, b3).
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For k the rotational part of &’ is identical to the C,, point group. Cov has two one
dimensional representations: the identity representation and the representation which
upon reflexion changes the sign of basis function (for superscripts we will use -+ and -).
There is also an infinite number of two dimensional representations with pairs of basis
functions exp (+im@) where ¢ is an angle of rotation around Co- Therefore, we obtain
three new types of the representations of the Gyye group: D¥I*(NJc), D*17(N/c) and
Dk IMI(N/C).

For k = 0 we obtain the irreducible representations which coincide with the representa-
tions of the D, ® I point group (4, A7, A5, A5, Ef, E7, Ef, EJ, etc. [27]).

The basis functions for the irreducible representations of Gyy. also can be found
easily in the same way as before.

6. The phase transitions from nematic liquid to other liquid crystalline phases

6.1. The phase transition :nematic to smectic A

We write Gy = Gsp or Gy, — Gsaje- For Gy — Gga we can expect that the sim-
plest ¢ will be:

0¢ = n Re {exp (ik,r)} +n” const Re {exp (i2k,r)} + ... (6.1)

d¢ is composed of the basis functions of the irreducible representations D" "°(N) where
n=1, 2, 3, etc.

It is relatively easy to study D*'°(N). First, it is obvious that the invariants of the third
order do not exist. To show this it is enough to multiply any three basis functions of the
form (5.3). The product is not invariant under a two fold rotation around the y axis. Now
let us find whether the weak Lifshitz condition for D*1°(N) alone is fulfilled. As kyllC, we
have only one degree of freedom for the star. Now let us form [D*'"°(N)J2. We have only
two basis functions: f; = exp (ik,r) and f, = fi =exp (—ik,r). There exists only one
antisymmetric combination of the second order:

Jan = f1f2—fif2 = 2 Re {exp [ik,(r—r)]}. (6.2)

Under translations and C, rotations Jan i invariant. However, any two fold rotation
perpendicular to the C,, axis changes the rsign Of fon. It follows that £, must belong to the
A, representation of the D point group. Finally we notice that the vector representation
of Gy can be decomposed into:

DV(N) = A2+E1.
Writing down the condition in (R. 6) we find that:
@M | [D"°(MN)]?) = 1. (6.3)

Therefore, the weak Lifshitz condition for D*'(N) is fulfilled. Going now to the secondary
order parameters and the representations D*'%(N), ... we see that each of the representa-
tions D**1°%(N), ... fulfills (6.3) and all together fulfill the condition in R. 7. Al the other
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conditions are very easy to check and we find that the second order phase transition from
noncentrosymmetric nematic to smectic A is possible in agreement with experimental
and earlier theoretical results [23-25, 28].

For centrosymmetric nematics the way of reasoning, all the calculations and the final
results are nearly the same.

The only difference is that instead of D*I%(N) we have D*'*(N/c), instead of the D,
point group with 4, 4,, E,, ... representations we deal with D, ® I with the representa-
tions A7, AT, AT, A7, E}, ... The vector representation, D'(N/c), can be decomposed
into A7 +E] and [D*'*(N/c)]* = A . Therefore, each of the representations D" *(N/c)
itself fulfills the original Lifshitz condition.

The second order phase transition Gnje = Gsayo is therefore possible.

6.2. The phase transition :nematic to smectic C

We write Gy — Gsc of Gy = Gs¢je. Let us start with centrosymmetric nematics,
The realistic form for d¢ should be

S0 = n Re {exp (ik,r)} +const ¥ ¢y, (Y DZ(0, 2, O)Y2(0, §)— ¥3'(0, )}. (64
1 m

We find that a second order phase transition is possible.

The proot:

The representation D*¥1*(NJc) connected with the primary order parameter as we know
from the previous section is the active representation. It fulfills all the necessary conditions
of the Landau theory.

Going now to the terms of the order # (secondary order parameters) we see that we
must consider the representations E;, E;, ... (for m = 1,2,..) of D, ® I. The most
important thing is to check whether the Lifshitz condition in R.7d is fulfilled. This is
because D'(NJc) = A; +E; and ((4; +EDI|E ;) = 0. The other conditions are also
very easy to check and consequently the second-order phase transition Gy — Gscye
is possible.

For noncentrosymmetric liquids the situation is different:

(D'(MN) [ [E,]Y) = (A2 +Ep) [45) = L.

In such a case the Lifshitz condition in R. 7d is not fulfilled and the second order phase
transition Gy — Gsc is not possible.

Finally, let us notice that all the above results concerning the order of the phase
transition remain valid if in formula (6.4) we change the order of the terms as follows:

so = {3 D240, 7, 0)Y,2— YZ} +#? const Re {exp (ik.r)}, (6.4")

6.3. The phase transition :nematic to cholesteric

Experimentally such a phase transition is not observed [2). Therefore, we will not
discuss the possibility of a second order phase transition Gy — Gy However, one can
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easily check that such a hypothetical phase transition could not be a continuous transi-
tion.

There are some thermodynamical arguments which suggest that the Gy — Gy, phase
transition is not possible.

7. The symmetry group of cholesteric liquid crystal

The cholestric liquid crystals can be formed only in noncentrosymmetric liquids [26].

Here we will not look for irreducible representations of Gcy as we did in the previous
section. To study the order of any possible phase transition from cholesterics to other liquid
crystals this is simply not necessary.

We will immediately find that any such phase transition must be a first order transition.

7.1. The phase transition Gep = Gga

The continuous phase transition Gg, — Gsa or Gsp — Gy, is not possible because
rule R. 1 is not fulfilled:

(@) G, D Gss — one of the elements Gsa is a rotation around the z axis. It is,
however, not present in G, but there is a screw axis instead.

(b) Gsa G, — one of the elements of Gey is a screw rotation for such a small
angle that translation along the screw axis associated with the rotation is much shorter
than the smectic interlayer distance.

7.2. The phase transition Gg, - Gy
The continuous phase transition is not possible because: Gep P Gsey, Gge D Gy

8. The irreducible representations of Gsa and Gy,

These are almost the same as the representations of Gy. The only single difference is
that instead of D A T, we have -

GSA = Doo A (TJ‘®T‘[?), (81)

where T is the translation group in two dimensions (planes perpendicular to C_ ) and T,‘,’
is the group of discrete translations in one dimension (one dimensional lattice parallel
to the C,, axis).

All we must do is to use the irreducible representations of Gy keeping in mind that k,
of any star can have only certain discrete values.

The same that held for Gy, is valid also for Gsae-

9. The phase transition: smectic A to smectic C

With the phase transition Ggy — Gy we associate d¢ of the form:

be = 3 cal} Dio(0, n, Y, E, $)—- Y5'(0, 9}, (9.1)
where
Y eu¥y = lim V7! J osalr, Ndr 9.2
i Voo 1 4
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is the orientational part of the density function for SA. V is a volume of a sample. The
way of constructing a form of the type (9.1) with a tilt angle, #, was already discussed in
the former parts of this paper.

The function dg is a combination of basis functions belonging to £, E,, ... representa-
tions of D,. The primary order parameter is associated with the representation E;. Let
us now examine the representation E;.

First, {E;}® does not contain an identity representation:

{E(}* = E5+3E;. (9.3)
Next we check the Lifshitz condition. As in section 6.1 we have:
DSA) = E;+4, and [E]* = 4,. (9.4)
Therefore,
(D'(SA) | [E4]) =1 ©-5)

and the Lifshitz condition in R. 7d cannot be fulfilled. The phase transition Gsa — G
must be of the first order.
For centrosymmetric liquids the results are different:

D'(SAjc) = Ef +4;, [Ei]* =47, (D'SAf)|[E{]) =0. (9.6)

The Lifshitz condition is therefore fulfilled for Ej. The same is true for E,, ... and, con-
sequently, the condition in R. 7d is fulfilled. After checking the remaining conditions we
conclude that the Gsa/e — Gscio Phase transition can be of a second order.

10. Conclusion

The results for isotropic liquids, nematics, cholesterics and smectics A, and C, are as
follows:
From the group theory point of view only N — SA, Njc — SA/c, SA/c — SC/c and
N/c — SC/c phase transitions can occur as the second order phase transition. All the other
phase transitions which can occur within the group mentioned above must be of the first
order.

The author thanks doc. dr J. A. Przystawa for pointing out some errors in an older
version of the manuscript and for his valuable comments. Thanks are also due to Professor
A. Fulifiski and dr K. Sokalski for discussions and encouragement.

APPENDIX A

To prove that there is an invariant in the representation {D**(Is)}® let us write one
basis function which belongs to D**(Is):
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The other functions which also transform according to D**(Is) are:

Jo = exp (i(@k,) - ) - ¥ Dir(0) Y0, 6), (A2)

where w denotes Fuler angles of some rotation and @ is the operator of this rotation.
Now let us form the product
JoSorSor = Y. Dar(@)Dpa(w,) exp {i(k, + o1k, + @k )r} Y Y, Y} (A.3)
n,m
and in the same way the products f,,, /5 /o, fuorSw fos - We select w; and @, in such
a way that:

exp {i(k,+ ok, + ok r} =1,

for example w, = (o, 2%/3,0) and w, = (¢+=x, 27/3, 0).
In short, we write:

fOfcolfcoz = z cn,mYZZYnZYnf’ (A4)

where ¢, ,, are appropriate constants.

Let us look for invariants in the sum (A.4). The necessary condition for an invariant
isn+m = —2.1f we write the explicit form of ¢y, _, (¢y,—, = ¢_,,o # 0, check for example
in [17]) we notice at once that as « is arbitrary we can choose « in such a way that invariants,
ifany, standing with ¢_, o and with ¢_; _; cannot cancel, i.e., they are linearly independent.

Therefore, the only thing one has to check is whether the product ¥2,¥2Y2 indeed
contains an invariant. It does because:

= (2 2 2 2 2 2
JYszfYozd(COSG)d(p~(o . 0)(_2 3 0>¢o, (A.5)

where (:::) denote 3j symbols [22].

Now the problem remains whether it is possible to form a symmetric combination
of the type (A.5) which contains an invaiiant.

It is easy to find that one such combination is:

ST Y “o

r,s,t

where r, 5, — any permutation of 2,~—2,0. The combination (A.6) is symmetric because

222y, . .
(r . t> is invariant under the exchange of any two columns.

APPENDIX B

The fact that ¢-can consist of a linear combination of the basis functions belonging
to two different irreducible representations and that there are two order parameters i.c.,
the primary and the secondary one — was already known long ago [29-31]. However, the
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occurence of such a situation was thought to be “‘exotic” and was consequently almost
forgotten. Therefore, to recall some of the results of papers [29-31] seems reasonable.
We will do this in a much simpler way than was done in paper [29].

We know that a modulation, 8¢, of the density function, which is responsible for
the lowering of the symmetry of the high symmetry phase, is:

dg = Z Ckn,ifkn,i =1 Z G, ion s (B.1)
i 2

where 7 is a small parameter and c, d are coefficients. If the group of symmetry of the
high symmetry phase is G, then fi,; (i = 1,2, ...) are basis functions of one irreducible
or physically irreducible representation D'(G,), which is called the active representa-

tion [6-11]..
There is, however, one slight modification which is possible [29-31]. Let us assume

that dg has the form:
so =% Conifini T 2 Chew iSiowit i (B.2)

fiw.s are basis functions belonging to other different irreducible representation, D" (Go)
Let us expand the density of the Gibbs functional G:

G(p, T, 0) = Go(p, T> 00)+Ga(ps T 00, 3) +Gs(p, T 00, 6)+ s (B3)
where

G2(p’ T, Qo> 59) = Z cuicijZ(pa Ta Qo,fuiafvj)a

ijuv

G3(p’ T’ Qo> 5@) == z cuicvjcrrG3(p’ Ta QO’fui’fvj’f'cr)’ (B4)

ijruve

and where pu, 7,7 = (kn), (kK'n’), (K'"'n"), ...
If we assume that:

2+ ‘ :
Cimi = Nimi»  Corw,i = CONSty * 7 dpws for j#0,s=00r1273..

Tldy2=1 for v=(kn),(K'n), ... (B.5)

where const,, are arbitrary constants, we again have the normal Landau theory without
any significant changes. To understand the physical meaning of the assumption in B.5 see
Appendix C.

Let us check if this is indeed so. For G, we find that -

Gz(Pa T5 Qo> 5@) = '12 Z GZ(pn T, Qo> fkn,i’fkn,j)dkn,idkn,j
ij
+n* + consty, Z G(D> T Qos Jurw s Jiow )Okw i@ew j+ -+ - (B.6)
ij

The term with 73 is not present as the products D" - D" do not contain a totally symmetric
representation of Go.
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This part of (B.6) which is proportional to #? changes its sign at the phase transition.
point. There is, however, no. such need for the second part, which is proportional to #*
Subsequently, there is no-danger that the new equation (the second one) of the type::

Y. GaPer Tor Qo Finwoi Siw M i, = O
t.J

will appear. Such an equation could change the line of phase transitition points p, = p (T,
into one isolated point (p., T,) on the phase diagram [6, 7].
For G5 we find that:
G3(p: T: Qo> 59) = 713 Z G3("',fkn,i,fkn,j5 fkn,r)dkn,idkn,jdkn,r
ijr
+ ’74 conStk’n’ z G3( sy fkn,i9 ﬁcn,j’ fk'n’,r)dkn,idkn,jdk’n’,r Se B8 G (B7)
ijr

The first term of (B.7) must vanish, exactly as in the original Landau theory, and the second
term do not jeopardize the theory because the power of # is too high.

In conclusion we see that no new conditions were introduced into the original theory
and as a matter of fact no serious modifications. For D*™ there exist only trivial conditions
which were already listed in the Introduction.

As a concluding remark let us note that as in the original Landau theory we obtain:

G = Gy+n*A+4*B, (B.8)

where B is positive and A changes its sign at the phase transition point. Of course, the
terms of the order #?, #® in dp will change the value of B, which should be smaller than B
corresponding to the theory with only one active representation. If there is no possibility
to lower the value of B, it follows that the terms of the order 72, 4 in dg cannot exist and
we end with the old original Landau theory with only one active representation and one
order parameter.

APPENDIX C

For the sake of simplicity we consider equation (B.2) with only two different representa-
tions. If we look for the minima of G with respect to {Ckn,i} and {¢;., ;} We must consider
two independent scalar values of order parameters, #;, #,:

M=V el 12 =V g (C.1)

or
Cn,i = ﬂldkn,i’ Cow,i = Ny s (C2)

where
Y il = X ldrl® = 1. (C.3)

The Gibbs potential, G, as the function of #,,#, can be written in the form:
G= (A1’1f+A2’7§)+(Bz’1%’72+Bs’71’1§+B4'1§)+(C1’741’+ ) el (C.4)y
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where A,, A,, B, ... are some functions of temperature and pressure. We assume that the
term B,#3 is not present in order to rule out a first order transition. If 4; >0 and 4, >0,
then the minimum of G is realised for n; = 5, = 0. However, if 4; changes from positive
to negative and A, is still greater than zero, then there is a phase transition. At the point
‘where 4, = 0 there is an instability in the potential G [32]. To study this instability we
follow Haken [32]: let G = G(3y, #2-+1,), where 53 is chosen so that G has its minimum
for 3 = 0, or in other words, that

oG 7

6ﬁ2 ;;2=0
holds. This may be considered as an equation for #9. For any given 1, we may thus deter-
mine 19 so that 72 = 73(,). Let us now calculate 73:

0G
ol W 24,n3+ Bt +2B3ny03 +3Bu(n3)’ + Coni+ .. =0, (C.5)
2 [p2=0
0 ' —ani 2
2 ~ const #7. (C.6)

- 2A2 +2B,14

The above equation, (C.6), is valid only for very small #;. For 7. # 0 but small, we may
use the expansion:

G = G(ny)+(7i,)*A,+higher terms, (C.7)

where A, >0 and where G(x,) depends only on 1,. We will not specify the explicit form
of A, and G. In the neighbourhood of #7; = 0 the potential G retains its stability in 7,
"and it is unstable only in 5. Therefore, the minimum of G will be for some value of #, and
for #, = 0. In other words:

’12|at minimum =’13 & const n%S (CS)

which finally explains equation (B.S5).

In conclusion: close to the phase transition point the order parameter 7, assoeiated
with the secondary representation D¥™ is not independent of the first order parameter.
To a good approximation 7, changes as a square of the primary order parameter #,;
therefore it follows that

lim #,/ny = 0. (C.9)
=0
Finally let us note that in equation (C.6) we assumed B, # 0. This in the language
of representations can be expressed as: (D*)?|D*") # 0.1f B, = 0 and C, # 0 the similar
condition should be ((D*)3|D*™) # 0.
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