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The relations that enable one to find the order parameters P, of the angle distribution
of the long molecule axes @, when the values P, for the vectors 5 describing the response of
the medium to external 1nﬂuences are known, have been derived. A particular case of the
mutual connection between @ and b which corresponds to the discrete statistical model of
nematics with a short-range order has been used to explain the differences between the
values of P, and P, measured by the EPR and the Raman methods, and the ones predicted

by the theory.

The ability to form spontaneously the regions (domains) with some types of order
is the principal property of the liquid crystalline (LC) medium. The other properties having
a practical significance result from the above one. In the case of a nematic (N) phase the
ordered region can be ascribed a direction characterized by vector n (called a director).
The angle distribution of long molecule axes has a cylindric symmetry. It belongs to the
point group D ;, and is characterized by the element of symmetry C, and oy. It is conven-

ent to describe the above distribution by the function f(cos 6) of the angle § = an, so that
j f(cos 6)d cos 8 = 1, and f(cos ) sin 6d0 is equal to the probability of finding the molecule 7

orlented within a cone [0, 8+4d0].

The microscopic theory of the LC state is expected to explain the nature of the forces
providing the order, their connections with the structure of the molecules, and the mech-
anism determining the temperature interval in which the given type of mesophase exists.
Such a theory does not exist yet. The theories explaining the particular properties of
a mesophase assume its existence a priori. The theory of Maier and Saupe (MS) [1, 2] is
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most similar to the microscopic theory. This theory agrees with the experiment only quali-
tatively. Attempts to modify it in order to get a quantitative description of the experiment
have failed. As a theory of a mean field, the MS approach ignores the arrangement of the
neighbouring molecules, which reflects peculiarities of interactions of real molecules.
The idea of a mean field of molecules provides a selfconsistency for the description of the
orientational statistics of molecules and, consequently, a prediction of the order-disorder
transition. From the moment -of discussing the dependence of the orientational potential
on the mean molecular volume and, further, the dependence of the latter on temperature,
the MS theory ceases to be phenomenologic. The dependence on the density of substance
is the veiled form of taking into account the short-range order. One can obtain better
agreement with the experiment assuming the simplest model of the short-range order
(each four molecules are rigidly connected parallel to each other [2]), but the MS theory
with such assumption is no more the theory of mean molecular field. The statistics of
molecules is now determined by the statistics of groups of molecules and the distribution
inside the group.

The broadening and change in the shape of the Raman spectrum bands, which accom-
pany the fusion of the solid crystalline (SC) form of a substance in the LC state may suggest
the existence of polymorphism of the short-range order in the LC melt, i.e. coexistence
of several types of short-range order in the mesophase [3]. The Raman spectral studies
of SC polymorphs of nematogenics show that for some of them the long axes of molecules
form a considerable angle (up to 90°) between one another. The X-ray studies [4] suggest
the same. Different SC forms and types of short-range order can be distinguished not only
by the geometry of the molecular packing but also by the geometry of the molecules them-
selves. The conformational changeability and SC polymorphism usually occur together.

The validity of the theory of the orientational statistics can be tested by comparing
its predictions with the temperature dependence of the order parameters obtained in the
experiment. Under rather general assumptions f(cos 0) can be presented as the series [5]

f(cos 6) = 145P,« Py(cos )+ 9P, - Py(cos 0)+ ..., )
where
P, = 051 P(x) f(x) - dx, @
and
Py(x) = 3x*—1)[2, Pyx) = (35x*—30x* +3)/8. 3)

Two order parameters can be found from spectral measuring of the luminescence
[6, 7], the Raman scattering [8], and EPR [9]. The results obtained by Jen et al. [10, 11]
and then by Heger [12] and Miyano [13] by means of the Raman method, and by the
Juminescence method [7, 14, 15] showed the considerable inconsistency with the theory.
On the contrary, the EPR results were in a good agreement with the theory [9, 16] (see
Fig. 1).
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For the comparison of the order parameters it is convenient to use the coordinate
system P,, P,. The solid curve on Fig. 1 shows the relation between P, and P, in the case
of f(cos 0) being of the form

1
f(cos 0) = exp {c,P,(cos 0)}/()[ exp {c,Py(x)}dx, 4
SRR oty
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Fig. 1. Experimental values of P, and P,: 1, 3, 6 — from references [11-13] respectively, obtained by
Raman scattering; 2 — from Ref. [16], obtained by EPR; 4, 5, 7 and 8 — from Ref. [7, 14, 15], obtained

by the luminescence method. The solid curve corresponds to the MS theory, the dashed one — to the model
of Luckhurst and Yeates

(c» is a parameter). This distribution corresponds to the orientational potential of a mole-
cule in the mean field of the surrounding molecules of the form

Uy = —a, * Py(cos 0), &)

where g, is a positive factor, which does not depend on 6. The set of points (P,(c,), P.(cy)
represents all possible values of the order parameters corresponding to the MS theory.
With the change of temperature, the point (P,, P,) moves along the curve. As there are
discrepancies between the above values and the experimental ones [11], a function different
from (4) is required in order to provide a correct description of the angular distribution
of molecules. The discrepancy mentioned above was discussed in several papers [16-20].
The attempts to find an agreement with the experiment in the frame of ihe generalised
mean field theory led to the following potential

Ui(cos 0) = u - P, - Py(cos B)+u' - F+ f(cos 0),
J(cos 0) = P,(cos )—2P,(cos )+ Pg(cosh) 6)
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instead of the one from (5). The distribution corresponding to the potential (6) has a maxi-
mum at 52°, but the nematic phase becomes unstable [19]. The other attempts [16-18]
do not have a clear physical meaning (the limit cases are understandable, but the interme-
diate ones do not have any interpretation). It will be shown below that the particular cases
of the discrete statistical model have the same mathematical form. The complete picture
of the orientational aspects of this model can describe all possible forms of correlations in
the arrangement of neighbouring molecules.

Let us consider the following model of a NLC with the short-range order: (7) all mole-
cules are divided into groups of anisometric form, the direction of the greatest dimension
of a group determining the anisotropy of its properties which are responsible for the interac-

Fig. 2. A sketch of the arrangement of molecules and groups of molecules in a nematic monodomain

tion between groups; (if) the angle dlstrlbutlon of the ' molecules in the average group is
described by the function f,r* (cos 9), where 9 = ab (iii) the angle distribution of groups
of spontaneously ordered regions, here called domains (or of monodomains, sets of domams
oriented by external forces) is described by the function f£,, (cos "), where ' = bn. The
meaning of the introduced angles and vectors is shown on Fig. 2. It can be shown (see
Appendix) that for the distribution of the molecules in the domain, fimol (cos 6), the coeffi-
cients of the series (1) are determined as

PD = PHOPE™, Q

PV, PMS and PSP are defined according to (2) by f(cos ) for molecules in domain,
molecules in group, and groups in domain, respectively.

In the particular case, when all molecules in each group form with the axis b the same
angle f8, i.e. when

'“"l(cos $) = 8(cos 3—cos ), ®)
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where d(a—x) is a Dirac S-function, the formula (7) can be transformed into
P,'® = P,(cos B)PS®. (7a)

Let groups inside a domain be distributed according to (4) and, consequently, PSP
and PgP be positive (sce Fig. 1). Then the order parameters P3P, P;® become negative,
when

Pycosf) <0, > fs,
Py(cosf) <0, B, > B> By,

(sec Fig. 3).
101 '
P,
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Fig. 3. The angle dependences of the functions P;(cos 6) and P,(cos 6)

The relation (7a) can be presented graphically, in the form convenient for practical
purposes. The parameters P,, P, are chosen as coordinates. As a result, we obtain in Fig. 4
two sets of intersecting curves, denoted as A and B. The lines of the set A join the points
on the curve B with the origin. The points (P,, P,) of the curves of the set A correspond
to the distribution of molecules in the domain in the case when the groups are distributed
according to (4), ¢, is varying from 0 to oo and the angle of inclination of molecules in
the group is constant. The limit line of this set (B = 0) corresponds to distributions of
MS theory for different values of ¢ (the numbers along this curve). Another set of lines (B)
connects points on the curve A with the ordinate axis. The values P,, P, on the lines of
this series correspond to distribution of molecules in a domain for fixed distribution of
groups (c, = const.) and for different values of B. The limit line of this set (c; = o0)
corresponds to the distribution when all groups are parallel to the director and identical
(B is the same for all groups). The values of B are given along the limit line.

Every experimental point (P, P,) determines then the parameters of the group distri-
bution, ¢,, and the ones of the distribution of molecules in groups, B, for given model of
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identical groups and given value of B. We will call this model f1. We assume now that we
have two types of groups (for § = f; and 8 = B,) and that the distribution of groups does
not depend on f (the model $2). Mathematically this model is identical with the case
when we have groups of only one type, but inside gach group a part of molecules has inclina-
tion f;, and another part has inclination B, with respect to the axis b. For the 82 model
for each point (P,, P,) situated between the lines § = f; and f = f§, there is a line

Fig. 4. An example of the application of the relation (7a) to finding graphically the parameters ¢, and f for
the model A1, and the parameter ¢, and fraction of f;- and f.-groups for the model p2

¢, = const such that a straight line connecting the points §; and f, on this line goes through
the given point (P,, P,,). The value of ¢, found in this way determines the distribution of
groups and the ratio of distances from (P,, P4) to (cz, f1) and (cz, Bz) determines the

ratio of number of f,- and f,-groups (see Fig. 4). In the general case when there are IV types
of groups we have, instead of (7a)

PY° = PSP Y kP (cosa), i=1,2,..,N (7b)

where k; is the fraction of groups of Bi-type, Y k; = 1,0 < B; < n/2. An experimental

point (P,, P,) determines now the parameter ¢, characterizing the distribution of groups
and the parameter characterizing the distribution of molecules in groups, e.g., the half-
width 48,,, of fi°'(cos B). We have then many models SN for a given point (P,, P,). We
may choose one of them thanks to the information about the number of possitle packing,
N, and the geometry of packing (values fi;, B, ... fy). It is natural to consider N to be
equal to the number of SC modifications. The problem of finding the fractions k; is the
task for a microscopic theory of NLC state.

Let us assume that a small amount of molecules in the nematics is of such a type
that the possibility of packing them jointly with the host molecules of a nematogenics can
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be excluded. Tt is then natural to expect that the angle distribution of the guest molecules
determined by the EPR or luminescence methods corresponds to the distribution of groups.
One can determine the distribution of the host molecules of NLC for the same sample
by means of Raman spectroscopy. After having obtained the values of PYP, PY® and
PSP, PSP one can find the values of PYC and P} with help of (7). The values of PSP
and P3P determine the curve ¢, = const; the distance to this curve from the point (P5°, P3'®)
limits also the possibilities of choosing the distributions fg‘:“’l(cos B) of molecules among the
possible kinds of groups.

In conclusion, we compare our explanation of the negative values of the order param-
eter P, with the one of Luckhurst and Yeates [16, 17]. The latter one consists in following:
(i) The considerable deviation of the values of P, measured by Raman scattering [11, 12]
from the values of P, predicted by the mean molecular field theories results from the
uncertainty of the interpretation of light scattering experiments. The authors give as a proof
the data for P,, provided by the EPR measurements, which are in good agreement with
the theory [9, 16] (see also Fig. 1). (if) The experimental values of P, and P, obtained
by Jen et al. [10, 11] coincide with the ones from the mean molecular field theory, when
the orientational potential U,(6) is assumed to be a rectangular well [17]

U,0) =0, 0 < 6,,
U0) =co, 0>8 )]

O i L i =
0 30 60 @°
Fig. 5. The probability density of orientations of molecules with respect to the director 7#: @ — the MS

model (¢, = 2.3), b — the model of Luckhurst and Yeates (6, = 52°), ¢ — the discrete statistical model
(the groups distributed according to (4): 93% of them correspond to f = 32°, 7% — to f = 0; ¢, = 7.4)

The relationship of P.(6,) on P,(0,) is shown on Fig. 1 as a dashed line. One assumes
here implicitly that 6, = 6,(T) is an increasing function of 7.

In Fig. 5 the curve a represents the function of the probability density of the orienta-
tion of molecules forming the angle 8 with the director in the case of the MS orientational
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potential (5) and the curve b represents this function for a potential of the form (9). Accord-
ing to Luckhurst and Yeates [16, 17], the EPR data correspond to the distribution @ and
the Raman data to b. This contradiction can be explained on the basis of the discrete statis-
tical model of short-range order for a nematics. In fact, by the EPR method one obtains
P, and P, of the guest molecules. These molecules are not isomorphic to the molecules
of the nematogenics [21] and they are long enough not to be packed inside the crystallizing
clusters. In such a case the statistics of the guest molecules correspond to the one for the
molecular groups (bodies, clusters), but not for the individual molecules of the nematics.

By means of the Raman scattering method one finds the order parameters of mole-
cules of a nematic medium [8, 11-13]. In this case the distribution of molecules, N ()Y
can differ significantly from the one for the groups, f*(0), when not all molecules inside
the group are aligned parallelly to the direction of the largest dimension of this group.
The curve ¢ in Fig. 5 represents the distribution of molecules in the case when the groups
are aligned according to the curve a (but with the halfwidth of 29° instead of 53°), while
inside groups molecules are inclined at angle 32° to t{he direction of the largest dimensions
of these groups. Both the b and ¢ distributions correspond to the values of P, and P,
equal to 0.5 and —0.043, respectively. The distribution b corresponds to the model of
nematics in which molecules fluctuate freely in the limits of the angle £0, and the distribu-
tion ¢ corresponds to the discrete statistical model. Both models explain the possibility
of negative values of P,: the first one for 8, > 50°, the second one for f > f; = 30.5°.
The second model explains also the peculiarity of the Raman bands broadening which
accompanies the melting of the crystal to a nematic phase [3] and is supported by the facts
of SC polymorphism of mesogenics [22]."

The model of a pure sterical potential (9) in the extremal case is equivalent mathemati-
cally to the discrete statistical model in which all the groups are parallel to the director
(6’ = 0) and the number of groups characterized by given angle B is equal for each f from
segment (0, 0,). The points of the dashed curve in Fig. 1 are the centres of gravity of the
segments of the curve B from 0° to 6. The above model does not cover the values of P,
and P, located below the dashed curve in Fig. 1 (as for the point located above this curve,
the procedure of formal mixing of the values of the dashed and solid curves in Fig. 1 has

been suggested [17]).

APPENDIX

Let the alignment of molecules in the ensemble-averaged group be described by the
distribution function f™°Y(8, ), where § and ¢ are the polar and azimuthal angles between
the symmetry axis of the group, b, and the long molecule axis, a. The alignment of groups
in a nematic monodomain is given by f¥.(6',¢"), where 6" and ¢’ are angles between b
and the director 1. The distribution of molecules in a monodomain Fmel(g, ¢), where 0 and

¢ are angles between @ and n, is defined by the expression

Jmek0, ¢) = jss Fmol(Q, @) - foa(0', ¢))do, (A1)
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where S is the surface of the unit sphere, do is a surface element, § = $(¢’, 6, —a"),

~

@ = @0, 0,p—¢"). Considering fir*' and f, as independent on the azimuthal angles

gr
mol

(consequently fie will also have the cylindrical symmetry), one can use functions dependent
only on cosines of the polar angles:

27fgom(cos 6) = [f fai(cos 9) - £& (cos 0')do. (A2)
S

Let us expand the new functions (without tilde) in the series of Legendre polynomials
(Ref. [5], p. 492): '

2n+1 _
Jaom(cos 6) = Z n2 P,® - P,(cos 6),

n

2n+1 _
mol(cos §) = & PY%. P (cos 9),
gr 2

n

2n+1 _
dom(C0s 0') = Z 3 PP Py(cos 0), (A3)

n

1
where P, = _f JS(x) + Py(x) - dx. Applying the integral formulas from the spherical function
-1

theory one obtains

0, m#n

{J Pcos @) P,(cos 9)do =3 4y (A4)
s —— P,(cos8), m=n.
2n+1

Substituting (A3) into (A2) and taking into account (A4) one obtains
PP — PSSP, (AS)

Let us assume the distribution of molecules in groups to be of the form fg’;“’l (cos 3)
= 1/L 6(cos §—cos f), then the distribution of the molecules in monodomain is determined

by the expression:
mol 1 X i 1 T ! ’ 4
27+ from(cos 0) = 0 o(cos S—cos f)fir (cos 0)do = . foam(@, ¢Ndl,  (A6)
8 L

where L is the circle cos 0’ cos 0—sin @’ sin 6 cos {¢—¢’) = cos § on the surface of the
unit sphere, the radius of the circle is equal to sin 8, the centre is at the point (0, ¢).

The evolution of the distribution (A6) with increasing angle f§ can be presented by
simple example. Let molecules in a group be oriented with equal probability along eight
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directions symmetric in relation to the axis of the group and inclined to the axis at angle f.
In this case instead of (A6) we have

fﬂﬁ%®=%;ﬁ%WL (A7)

0 30 60 6°
Fig. 6. The angle distributions of molecules with respect to the director, when all the groups are identical

and their distribution corresponds to (4) (¢; = 5.0). The numbers near the curves indicate the angles of
inclination of molecules to the axis of the group

where x; = cos (0—f), X, = Xg = €08y cos (B—ap), x5 =cos(0+pf), x3=x;
= cos fcos f, X4 = Xg = COS 0o COS (0+0ay), mo = arcsin (sin f sin 45°), o
= arctg(tg f cos 45°).

In Fig. 6 the results of calculations of fmol "hased on Eq. (A7) for a set of angles, are

presented. f5.., is assumed to have the form (4).
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