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We study molecular vibrations in strong monochromatic laser light. The rotating wave
approximation if formulated, which allows for analytical discussion of vibrations for moder-
ately strong resonant field. A numerical study of vibrations in very strong fields is also given.

1. Introduction

The importance of the interaction of molecular vibrations with strong laser light
has been recognized in the study of isotope separation by strong infrared radiation [1].
It turns out, that SF¢ molecules irradiated by resonant laser pulse dissociate very rapidly,
absorbing about 30 photons. The process is isotopically selective if the laser light is in
resonance with vibrations of one isotopic component. However, the physics of the dissocia-
tion process is not well understood.’

It has been argued, that the process of excitation and dissociation by multiphoton
absorption can be adequately described in terms of classical mechanics, quantum theory
will introduce only small corrections. We will not repeat the arguments, but refer to the
beautiful original papers by Lamb [2, 3].

The classical approach to the molecular excitation is much simpler than the quantum
one. Although one cannot suppose to obtain excellent quantitative agreement with the
experimental data, one can gain insight in the physical process taking place in the molecule.
Moreover in the classical approach one is not faced with difficult problems, like spreading
of the wave packet, tunneling effects and so on. One can simply discuss the classical trajec-
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tory, which is the solution of Newton’s equation of motion. Knowing the trajectory one
can easily find all the interesting physical quantitics without any other approximations.

The quantum approach to the coherent interaction of the molecules with the resonant
radiation has been studied rather extensively in the last few years. The most common
approach was to represent the molecule as a many-level system [4]. The laser beam causes
transitions between levels, and the dipole moments, or the Rabi frequencies are taken
as phenomenological parameters. The Schrédinger equation for such systems can be
solved numerically or, in some cases, analytically, and the time dependence of physically
interesting quantities can be discussed.

Our classical approach to the problem is closely related to these works. However, all
the parameters of the problem are fixed by the choice of the potential rather than being
only ad-hoc introduced to the model. Since the potential has a realistic shape there is no
possibility of finding non-physical results.

A lot of work on the forced non-linear oscillator used the so- called Duffing equa-
tion [5]:

% = —oix+px*+F coswyt,

where wo, f > 0, F, o, are parameters, as an example. Thﬂs is often considered to be the
simplest generalization of the linear forced oscillator equation. We will not- be specially
interested in this equation, it does not represent a realistic molecular force due to the repul-
sive part Sx2, dominant for large x. We will however, comment rather frequently on the
corresponding results known for the Duffing equation.

It has been argued in the quantum approach to multiphoton processes that the coherent
interaction of vibrations with laser light cannot lead to dissociation. One has to add various
assumptions -about the interaction of vibrations with other degrees of freedom of the
molecule. A similar result will be found in the classical approach — coherent interaction
with the laser field does not lead to dissociation, unless for an extremely strong field:

In the present work we study in some detail molecular vibrations in the presence of
a driving monochromatic force. We shall not restrict ourselves to the case of weak fields
and discuss the trajectory in strong fields as well. For realistic fields we will give an analytical
treatment of the motion. The use of action-angle variables, together with the assumption
of resonance, allow one to formulate the rotating wave approximation (RWA) [6]. The
general features of the trajectory can be found in this approximation, and in some special
cases, equations of motion in RWA can be solved exactly. It will be shown that in RWA
the trajectory is bounded, hence this approximation does not allow for dissociation. The
influence of other terms (non RWA) in the equations of motion is studied in perturbation
theory up to second order. It is shown that these terms give rise to a frequency shift (the
Stark shift) and to high frequency corrections to the trajectory. However, the trajectory
remains bounded [x(¢)| < L for some L for all ¢, hence there is no dissociation. These
features are confirmed by numerical calculations.

The above results are valid for relatively small values of the applied driving field.
In the case of strong driving fields we failed to find a suitable approximation method and
our results are based on numerical calculations only. We find that for field strength below
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some critical value the weak field approximation holds and the trajectory is bounded.
For field strength above the critical value the trajectory is unbounded — dissociation takes
place very rapidly, the time needed for dissociation is of the order of one optical cycle.
In other words our numerical calculations predict a sharp dissociation threshold — dissocia-
tion does not occur for fields below the threshold, and is very rapid above the threshold.

The problem whether the trajectory is bounded or not is closely related to the similar
one for the case of the Duffing equation. The latter one has been studied extensively in the
literature (see Ref. [5]) both from the mathematical and physical point of view. Although
the potentials in our case and in the Duffing case differ significantly for large x, our results
about the existence of a threshold are in qualitative agreement with the Duffing case.

Montroll et al. (Ref. [5]) predict that in the Duffing case, if the driving force is in
exact resonance the trajectory is unbounded for any nonzero amplitude of the force.
It turns out that in our case the trajectory seems to be bounded for sufficiently small values
of the resonant driving force, or at least is bounded for a rather long time. Because of the
anharmonic frequency shift and fieldinduced shift it seems rather unlikely, that the exact
resonance of the driving force with the bare frequency should be distinguished.

Of course, these results do not apply to complex molecules, like SF4, where the interac-
tion of vibrations with other degrees of freedom seems to be strong and is, in fact, res-
ponsible for the dissociation. Our approach is suitable rather for simpler molecules, like
diatomic ones, where there is only one mode of vibrations. It has been shown experimentally
[5] that diatomic molecules. do not dissociate in a strong laser pulse, contrary to the case
of SFe. This fact is in qualitative agreement with our results.

2. Action-angle variables and equations of motion

Let us consider the motion of a particle subject to a driving oscillating force and a time
independent potential. Although we will not assume any partiéular form of the potential;
we will have in mind the general features of a molecular potential. It has a minimum around
which it can be approximated by a harmonic potential —Zmwi(x—x,); for x — oo it
goes to 0; and for x — 0 it tends to co0. A specific example, the Morse potential, is discussed
in detail in Section 5.

Our discussion of the motion will be based on the Hamilton equations in action-angle
variables. These variables are well known in classical mechanics. We refer to standard
textbooks for their detailed discussion [7]. Here we shall give main definitions only and
restrict ourselves to one dimensional systems.

Let x and p describe the trajectory of a bound system in the phase space. Define the
action variable as:

1
I = —| pdx,
2n S

where the integration is taken over the closed trajectory. The angle variable ¢ is, by defini-
tion, the canonically conjugate coordinate to 1.
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The total energy of the system is a function of I only. The Hamilton equations of
motion are:

S _0E_
. O0E
op

The trajectory x(¢) can be expressed as a function of I and ¢:
x = x(I, p).

Since x is periodic, one can expand it into Fourier series:

[ee)

x(I, o) = Y e/ I)exp (ing). 0

n=-—ow

This formula will be extensively used later.
Let us include now the interaction with the laser field. We will use the dipole approxi-
mation; thereforé the interaction Hamiltonian is

H, = —e& cos (w .1)x(I, ¢),
where e is the electric charge, & the field amplitude, o the laser frequency and x the position

of the particle. If we make use of the Fourier expansion we may write

o0

H, = —efcosawpt Y c,(I)exp(ing). )

n=—c0

From the total Hamiltonian H = H,+H, the canonical equations follow:

. z t de,
¢ = w(l)—edé cos wit d—cI exp ing, (3a)
I=efcoswt Y cDinexping. (3b)

These equations form the basis of our discussion. If we solve (3) for 7 and ¢ we may find
the particle trajectory from the formula (1).

Of course Eqs (3) cannot be solved exactly (except in the case of the harmonic oscillator).
We will therefore study various approximations and also give a numerical example.

3. The rotating wave approximation

Cur main approximation will be based on the fact that the laser frequency is very
close to the fundamental frequency of the motion. To be more precise, let w(l) — wq
for I — 0. For very small 7 (small excitation) the motion is nearly harmonic, with frequency
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wo. We assume that @, & ©,. Under this assumption on the right-hand side of Eqgs (3) we
may find slowly varying terms and rapidly oscillating terms. Dropping the rapidly varying
terms and retaining slowly varying ones is known as the rotating wave approximation
(RWA). In this approximation we find:

de, ’
¢ =o()—Les| = &P i(p—aw)+cc. |, (4a)

i= % eélic, exp i(p—wrt)+c.c.]. (4b)

We will now discuss these equations. Let us first introduce a new variable y = ¢—aw;t,
Egs 4 take form

. . dey .
y = o()—w,—5 ef T exp iy+c.c. |, (5a)
I = L eélicy expiy+c.c]. (5b)

Note, that we do not have explicit time dependence on the right-hand side of (5a) and (5b).
Equations (5) are of Hamiltonian form for I and y. Therefore the “Hamiltonian”.
is a constant of motion. One can easily find that the “Hamiltonian™ is given by

H = ED— o~ [e(D) exp ix+e.c], ©

where E(I) is the energy of the initial problem, expressed as a function of 1.
With the help of this constant one can eliminate y and obtain an equation for I alone.
We have

I ={G e&)er(De- ()~ (H—ED+ap D)}, 7

This first order equation gives the time dependence of 7 in the rotating wave approximation.
We will solve this equation for the particular case of the Morse potential in Section 5.
Here we will give some qualitative discussion only.. Let & = 0; then (7) reads:

I ={—(H-ED)+ol)y}'"

It may seem that this is a contradictory result, because of the negative quantity under
the square root sign. However, from (6) we find (for & = 0)

H — E(I)—(DLI,

hence [ = 0 in this case.

For & > 0 the right-hand side of Eq. (7) depends strongly on the shape of the functions
¢1(I) and E(I). In the case we are interested in, namely that of molecular vibrations, these
functions do not depend critically on the details of the potential, and their typical form is
plotted in Figs. 1, 2. Hence the right-hand side of equation has a typical form shown in
Fig. 3.
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From this typical shape it can be seen that I performs oscillations between two roots
of the equation

[Le€c,(De_ (D] —(H—E(I)+ary)® = 0.

We will solve Eq. (7) explicitly for the case of the Morse potential.

4. First and second order corrections to the RWA ~— the frequency shift

Let us now study corrections to the rotating wave approximation. We will show, that
there are two kinds of corrections. The first kind are the rapidly oscillating terms which
should be added to 7 and ¢ calculated from the approximate Eqs (4a) and (4b). The other
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term is the frequency shift. This may be called “AC classical Stark shift”’, and will be calcula-
ted below.
Let

g =¢P+oM+ ., (8a)
I=1941M | (8b)
where (@, 19 satisfy Eqs (4a) and (4b) and g, Tare solutions of full Eqs (3a) and (3b).
The first order corrections ¢ and are ¥ given by:
t

dw ! an
g = fdt' [71— IV _eg E cos wy ¢’ a exp i”‘P(O)] > (92)

n

t
IMW = _cg fdr' Y’ cos wyt'c,in exp ing'®, (9b)

where ' means that the resonant terms are excluded. These integrals cannot be worked
out exactly. The reason is that 7> and ¢'? are time dependent. We may, however, make
use of the fact, that the time dependence of /” and ¢ —ew,z is slow compared to wy.
This is true, of course, for fields not too strong. In this case we may calculate the integrals
adiabatically, approximating 1(¢") by 1) and ¢©(t') by wTO@)t'+1°Xt). Such
a procedure leads to:

@) "fdo  Texp(inw+im)t exp(inw—iw,)t
P = —ef ——cint| — =t
dl (ino+io)® = (inw—iwg)?

dc, [exp (inw+img)t  exp (inw—im)t
dI iho+iw inw—iwmy
all . s 9 { s {
IV = g E c,,in%[ Xp (inoHio)t | exp (ine— o) ] (10b)
ihw+iwy, ino—iwg

Note that ¢ and I" are oscillatory, i.e. their time average is zero.

We will not reproduce formulas for the seond order corrections here. We will state
only, that the second order correction to I, i.e. 7® has no d.c. term, in other words its
time average is zero.

On the other hand, the second order correction to @ contains a d.c. term. It is

given by
’ d*w 1 1
= (2) 1 2 2
= > (ef n“c,c_,
MCI A Z { ar® [(nw+wL)2 Jf(nw—wL)’J
n=0 -

, de, do 1 1
TRy | e
dl dI | (no+w;) (no—w;)

d’c, 1 1
+n2c_,, 2 [m + P, CO ]} +a.c. terms. (11)
L — Wy
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The d.c. term given above represents a’“frequency shift due to the interaction with the
oscillating field. Contrary to the a.c. terms, the d.c. term causes systematic deviations of
the solutions of the Eqgs (3a, b) from the corresponding solutions found in the rotating
wave approx1rnat10n However, if one takes the corrected value of the frequency in the
Eqgs (4 a, b) one finds that the RWA solutions follow the exact solutions for all times.

It is interesting that there is no d.c. contribution, at least in the second order, to 1 @,
Therefore, the solution of the full Eqs (3a, b) should be qualitatively the same, as the solu-
tions of Eqs (4a, b), i.e. the action variable, or the energy, should be oscillatory. In other
words there is no net energy uptake from the oscillating field by a nonlinear oscillator.

There is an attempt to use the above model (possibly with quantum corrections) to
describe the multiphoton dissociation of molecules, particularly the widely discussed SFe
molecule. Tt follows from our results, however, that a purely coherent interaction of radia-
tion with an anharmonic oscillator cannot lead to a rapid energy growth, hence dissociation.
What seems to be responsible for the rapid energy uptake from the laser ficld by the molecule
is a strong coupling between the resonant vibrational mode of the molecule with other
degrees of freedom [1, 2]. Cur model does not take into account those effects, hence is
applicable to such molecules, where coupling of an oscillatory mode to other modes is much
weaker, e.g. diatomic molecules. Experimentally, the multiphoton dissociation of diatomic
molecules has not been observed, although attemps were made (see Ref. [1]), that confirms,
at least qualitatively our results. -

5. Example-motion of a charged particle in the Morse potential

We will illustrate our results in one example-motion of-a charged particle in the Morse
potential with a harmonic driving force. The Morse potential is used very often as a suitable
analytical model for molecular vibration. It allows for the analytical solution for the an-
harmonic vibrations.

The Morse potential is given by:

U(x) = Uo[2 exp (—2x/a)—exp (— x/a)]
Let us find first the free motion (without external force) in this potential. The Newton
equation:
dU(x)
dx

mx = —

can be ecasily solved:

{ a)z(E) |: a < a)z(E)>1/2' ' ]}
x(1) = —al{ln —5" —hn|1-{1- — cos w(E) (t—1o) |7 »
4(,00 wo

Uo . ) - .
° 5 is the frequency near the potential minimum, E < 0 is the total energy,

where wj =

oXE)= — 5 and fo is the initial time. Positive values of E correspond to unbounded
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motion. We will not discuss it here. The s1mphc1ty of the above solution allows one to find
explicitly action-angle variables. One finds

- [—2E\Y?
Y = ( 2> (t—to) = w(E) (t_to)a (123)
ma

I = (=2ma’E)'*— (L ma*Ug)? = (—2ma*E)*—1,, (12b)

Note, that I is a constant, and is a function of énergy\ only.
One can find the trajectory x(E t, 1,) as a function of I and ¢:

» Io—1I I(I—2I)\'"*

x(I, @) = —a{ln( °4 2) ~In [1— < ( - °)). cos tp}}. (13)
0
The Fourier coefficient for x(I, ¢) can also be found:
‘ - a ) e UES
= - , >0 14
o n[ZIO—I] O (14
o, = Cp

In particular -

o
I = %8
ci() =a [210_1]

Let us mtroduce dimensionless variable: f ='1/1,.. We- have-

cl(ﬁ)—a(zﬁ 'ﬂ\)m,v» | o as

- 0(B) = wo(1-p). (16)

Let us discuss now the influence of the external driving harmonic force. Eqs (5 a, b) now
read:

k" arp e
i = oot~ —esall [2 ﬁ] os 3 (172)

' ﬁ 1/2 2
ﬁ——eéaa/Io[ ﬁ] smx.’ : (176

Let us now find the exphc1t form of the Eq (7) for the Morse potentlal
We find : : o il o 0 a g ;

B v‘ﬁﬁ JARy ,‘: ; o
B:il./l‘c,» [@mz ;[;’*(H ~30elof)| . o
or, in dimensionless units (= wot, F = ,4%0“/ Uo): |

B _i[pa P _(BHY 8H 4}1’2
—ZI:F — <U0>+z | (19)
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8H
Denote A (the ratio of the initial energy to the binding energy) by b. Note also, that
V]

one can neglect f as compared to 2 (the excitation cannot be large), we find

dﬁ_
dr

N~

F2? 1/2
[7 B—b*+2bp* — [54] . (20)
This equation can be solved in terms of elliptic functions. In the case b = O (initially there
was no excitation) one finds

1/3 1/3 2y-1
() = (g) {1+ |:m—n t'g l:oc+sn@ (pﬁ-l—g (—;) (t—to)>]] } , 21

where
m=[E3-D1" n=[F3+P1"% p=2: 314, p, = (2J3-3)"%

[(p+p1)2_4n2:|i/2
ctgoc = 2, 2 »
4n”—(p—p1)

sn is the elliptic sine and ¢, is determined from the condition f(z = 0) = 0. We will not
quote the result for b 5 0 because it does not introduce new features.

Numerical calculations have been done to visualize the trajectory of a charged particle
in Morse potential under the influence of driving harmonic force. Similar calculations can
be found in Ref. [3]. The following conventions have been used.

We have assumed that the driving force is in resonance (@y, = ®,). The dimensionless
distance and time have been defined

y =Xxla, T = @gT.

Ay £:01
25 :

2.01

15

12

v

Fig. 4
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Fig. 4-6. Trajectories in Morse potential and oscillating field for various field strengths
Newton equations are now
d*y
dz*

= 4[4 exp (—2y)—exp (— )]+ F cos 1,

where F = 4e8a/U,.
Note, that F is the ratio of the interaction energy with the field e€a to 2 times the binding
energy.

In the case of weak fields (F < 0.3) the trajectory is bounded. One can see that the
particle oscillates with the frequency of the driving field, the amplitude of these oscillations
is modulated with a smaller frequency A. One can check, that formula (21) gives the correct
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value of this frequency. Higher frequency components are not seen on the plots. Notice,
that the amplitude does not show any tendency to systematic growth. Although this state-
ment cannot be treated as a proof that the trajectory is bounded for all values of time,
it provides nevertheless, together with the perturbative analysis of Section 4, a very strong
indication, that the trajectory remains bounded for very large times.

The case of strong fields F > 0.3 has aIso been studied numerically. Notice the dramatic
change in qualitative behavior of the trajectory for F < 0.3 and F > 0.3. In the latter case
the trajectory is open, contrary to the previous one. The disintegration of the system is
very rapid, in fact the particle remains “bounded” for time of the order of one optical
cycle. Similar problem was studied extensively for the case of Duffing equation (see Ref. [4]
and references quoted therein). Similar thresholds exist in this case too. It is, however,
rather hard to compare these two cases due to the repelling part of the potential in the
Duffing case.

1t is doubtful, whether these results have any physical significance. In fact values
of F larger than 0.3 correspond to light intensities 7 2 10*°W/cm?. Such high intensities
are not accessible, and will not be accessible soon,

Nevertheless, we think that it is interesting from the mathematical point of view to
realize the dramatic difference in solutions of Newton equations for different values of the
driving force.

6. Conclusions

We have studied motion of a particle bounded in a potential subject to a driving har-
monic force. The driving field was assumed to be close to the resonance with the fundamental
frequency in the potential. Particular attention was paid to the case of relatively weak
driving forces, since only such are experimentally accessible. Under these conditions the
rotating wave approximation can be used to find the motion. We have shown, that the
trajectory in this case is relatively simple: the action- angle Varlables oscillate around
their steady state values. These oscillations have been discussed thoroughly.

Experlmental verification of our results can be provided by the study of the fluores-
cence spectrum of a molecule illuminated by a strong resonant laser light. The trajectory
x(¢) in this case has (in the rotating wave approximation) many Fourier components, hence
the spectrum should have a multi-peak structure. Similar three peak structure of the fluores-
cence spectrum has been recently found in two level systems [8]. It must be noted, however,
that in the two-level systems the separation between the central peak and the side-bands
is equal to thé Rabi frequency, hence is-a linear function of the driving force. In our case
the seperation is given by a much more complicated formula. Therefore the analogy with
the two-level systems is not very close.

It is evident from our results that coherent interactions of vibrations with mono-
chromatic driving field cannot lead -to dissociation. As we mentioned in Section 4, in
acomplex molecule, like SFe, interaction of vibrations with other degrees of freedom
cannot be neglected. This effect is responsible for the energy uptake by complex
molecules and for the dissociation.
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The strong field limit of Newtons equation is studied in this paper numerically only.
This point of the work is of less physical importance, because lasers of such power do not
exist. Nevertheless one can gain some insight into the limits of applicability of the weak
field approximation.

I wish to thank Mrs. Chela Kunasz and Mr. Javier Sanchez-Mondragon for their
help in numerical calculations. I am indebted to Professor Joseph Eberly for his interest
in the work and critical reading of the manuscript as well as for the hospitality extended
to me in Rochester.
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