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Two kinds of radial corrections have been added to the Hartree-Fock spherical po-
tential in order to take into account relativistic effects. Excitation energies and transition
probabilities were calculated and compared with the results of fully relativistic Dirac~-Har-
tree-Fock and non-relativistic Hartree-Fock calculations for a number of three-electron
atoms. The results indicate that the corrections allow us to include a major part of relativistic
effects within a simple, non-relativistic computational scheme.

1. Introduction

The most rigorous way of taking into account relativistic effects is the Dirac-Hartree—-
—Fock (DHF) method with perturbational inclusion of the Breit term [1, 2]. Although
a computer program for this method is generally available [2] and extensively used (see
€.g. [3, 4]), the calculations are much more complicated and expensive than in the non-
-relativistic case. Recently some work was done on the problem of introducing effective
potentials to the non-relativistic Hartree—Fock (HF) equations in order to incorporate
in this way the major part of relativistic effects within a non-relativistic approach [5, 6].
In the approach by Cowan and Griffin [5] the potential consisting of the mass-velocity
and Darwin terms of the Pauli equation has been added to the HF spherical potential.
In spite of completely neglecting the spin-orbit interaction a dramatic improvement in
the results was obtained compared to pure HF calculations. In this paper the complete
Pauli correction, including the spin-orbit term, was used instead. This modification of the
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HF method is referred to as HFRC. Another approach was proposed by Karwowski and
Klobukowski [6], who derived a relativistic pseudopotential from requirements imposed
upon asymptotic behaviour of the solutions of the radial equation. The pseudopotential,
which includes also spin-orbit effects, may be introduced in any program solving a radial
Schrodinger equation. In the present paper it was applied in atomic HF calculations®. We
shell refer hereafter to this kind of modification of the HF method as the HFRA method.
The pilot calculations reported here were performed for several members of the lithium
isoelectronic series.

2. Method

The calculations were performed using the numerical Hartree—Fock program developed
by Froese—Fischer [8] with relativistic correction terms added to the spherical one-electron
HF potential. Two types of the correction terms were used”:

HFRA method. The pseudopotential derived from requirements imposed upon
asymptotic behaviour of the radial functions has the form [6]:

Wa(r, E) = [(E— V()" = V(r)*[2k], M

where o ~ 1/137 is the fine structure constant, E is the orbital energy of the electron and
V(r) is the one-electron Hartree—Slater central field potential with local exchange function.
The potential ¥(r) used in this paper is the same as that proposed by Cowan [9). The
quantum number k = &(j+1/2), where ¢ = +1 and j = [+¢/2 (jis the total and / — orbital
angular momentum gquantum number).

HFRC method. The pseudopotential consists of the radial parts of the mass-velocity,
Darwin and spin-orbit terms of the Pauli equation

W(r, E) = o® [(E—V)2+ Lav [5,;1 (i Gl —1> +k—1]/[1+oc2(E—V)/2], 2
2r dr R dr

where R is the radial function and &, — the Kronecker delta. Due to the factor 1/(1 +a*(E
—¥)/2), the singularity of the Darwin and spin-orbit terms for r — 0 is =2 rather than
r 51

The local approximation of the exchange function has been employed only in the
relativistic pseudopotentials. In the non-relativistic part of the self consistent field (SCF)
equations the rigorous HF exchange was used. The SCF equations were solved using
the routine iterative method. Since the SCF potential depends, in an explicit way, on the
eigenvalue E being different for different orbitals, the solutions, in general, are not ortho-
gonal. The nonorthogonality is however negligible in all the cases under consideration
(thie overlap integral is always less than 0.001).

* Very recently the same pseudopotential has also been used in molecular SCF X% Scattered Wave
calculations [7].
2 All quantities are expressed in atomic units.



837

Transition probabilities have been characterized by the oscillator strengths calculated
using the standard formula:

27+1 (1 j 1)2
sty = 4aE e d

2
al||Din' 1>, (3)
L 1 } Knl{iD|
where nlj, n'l’j" are quantum numbers describing the initial and the final states, respectively,
AE is the transition energy and D is the transition operator.

3. Results

The eynergies Of 2812 = 2P1j2, 28172 = 2P3)25 25172 = 3P1y2, 2812 — 3ps3,, transitions
and the corresponding oscillator strengths (for length and velocity transition operators)
were calculated for a number of atoms belonging to the lithium isoelectronic series. Both
ground and excited states of each atom were obtained allowing all orbitals to be varied
(no frozen core). In the evaluation of the oscillator strengths calculated rather than experi-
mental values of AE were used. The results of HFRA and HFRC calculations are given
in Table I (transition energies) and Table IT (oscillator strengths). For comparison, the
results of HF and DHF calculations [3] are also given.

Transition energies, fine structure splittings and transition probabilities obtained by
means of the pseudopotentials agree very well with the DHF results. For the transition
energies the maximum error calculated relative to DHF (25 — 2p transition of Ar XVI)
decreases from 12 % (HF) to 2.3% (HFRA) and 1.7% (HFRC). The remaining error is of
the same order of magnitude as the contribution of the Breit correction.

TABLE I
Energies (in a.u.) of 2s — 2p and 2s — 3p transitions
— — — e
2s —>2pt 25 ——>3p2
HFY> HFRA HFRC DHEF? HF® HFRA HFRC DHF?
— ! e — —
Ll o6y 100677 0.0677 0.0677 4o 0140 0.140  0.140
! ¢ 0.0677 0.0677 0.0677 0.140 10,140 0.140  0.140
! 0.297 0.296 0.297 1.46 1.46 1.46
Crv 0296 10,208 0.297 0.297 146 1146 1.46 1.46
0.444 0.442 0.443 3.04 3.03 3.03
OvI- 041 10446 0.445 0.445 ! 3.03 304 3.03 3.03
0.591 0.586 0.589 | 5.18 5.17 5.17
NeVIIL | 0585 10,599 0.595 os96 | 16 {5.18 517 517
i 1.21 1.16 1.18 ] ‘ 19.4 19.3 19.4
AIXVE | LIS 4143 1.29 130 - 1920887535 19.4 19.4

2 For HFRA, HFRC and DHF methods the first doublet component corresponds to Sij2 = P12
transition and the second one to 51/ —> psjz. P From [3].
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TABLE II
Oscillator strengths (% 10%) for 2s — 2p and 2s — 3p transitions
25 ———>2p? 2s —>3p?
HE?D HFRA HFRC DHF? HF? HFRA HFRC DHF?
length
Lil 255 255 255 255 1 1 1 1
510 511 510 511 2 2 2 2
Civ 97 97 97 97 66 66 66 66
195 195 195 195 133 132 133 132
OVI 67 67 67 67 87 87 87 87
134 136 135 135 175 174 174 174
NeVIII 51 51 51 51 100 99 100 99
102 104 104 104 199 198 198 198
ArXVIl 26 27 26 26 121 120 121 120
52 60 58 58 241 236 237 236
velocity
LiI 262 264 264 264 1 1 1 1
523 529 529 529 2 2 2
CIvV 104 " 108 107 107 65 64 64 64
208 215 215 215 120 128 129 128
OVI 72 76 75 75 86 85 86 85
144 152 151 151 172 170 171 170
NeVIII 55 59 58 58 98 98 98 98
109 118 117 117 197 194 195 195
ArXvl 27 34 29 30 120 118 120 119
54 69 65 66 240 233 235 234

2 Tn each case the first number corresponds to s1/2 — P1/2 transition and the second one to 512 — P3/2¢

b From [3].

REFERENCES

[1] 1. P. Grant, Adv. Phys. 19, 747 (1970).

[2] J. P. Desclaux, Comput. Phys. Commus. 9, 31 (1975).

[3] L. Armstrong, W. R. Fielder, D. L. Lin, Phys. Rev. Al4, 1114 (1976).
4] J. P. Desclaux, D. F. Mayers, F. O’Brien, J. Phys. B4, 631 (1971).
[5] R. D. Cowan, D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).

[6] J. Karwowski, M. Klobukowski, Acta Phys. Pol. A54, 237 (1978).
[71 M. Klobukowski, Thesis, Nicholas Copernicus University, Torun 1978.
[8] C. Froese-Fischer, Comput. Phys. Commun. 4, 107 (1972).

91 R. Cowan, Phys. Rev. 163, 54 (1967).



