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IDEAL THERMAL RESISTIVITY AND LORENTZ NUMBER
OF ALKALI METALS
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The ideal thermal resistivity and Lorentz number of alkali metals due to scattering of
conduction electrons by thermal vibrations are determined at different temperatures from
various available pseudopotential form-factors for electron-ion interaction. Information
about the dynamical structure factor is obtained through the phonon spectrum derived from
a modification of Sharma and Joshi’s lattice dynamical model by introducing de Launay
and CGW type of angular forces betweén the ions. The calculated temperature variation of
the thermal resistivity shows reasonably good agreement with experiments, except for lithium
and sodium in the low temperature range. The Lorentz number curves show marked variation
with temperature in sharp departure to Wiedemann-Franz law.

1. Introduction

In pure metals, the resistance to the transport of heat is mainly due to the scattering
of conduction electrons by the thermal vibrations of the lattice. Ziman [1] and Baym [2]
have given general formulation of the problem from a variational solution of the Boltzmann
trensport equation. Any theoretical study of phonon limited ideal thermal resistivity by
this approach requires a knowledge of two main elements, namely, the electron-phonon
matrix element and the dynamical structure factor of the ion system. For reliable results,
these two quantities should be known in sufficient details.

During the past few years, the pseudopotential theory of metals [3] has proved to be
an elegant theoretical framework for the evaluation of form-factors of electron-phonon
interaction in simple metals. Several authors have proposed different forms of pseudopo-
tentials from empirical and semi-empirical considerations by fitting the parameters to some
experimental data such as atomic energy levels, liquid resistivity or phonon dispersion
curves [4]. Attempt has also been made to calculate the pseudopotential from first prin-
ciples [3]. The subject has been reviewed by Cohen and Heine [5] and they have summarized
the pseudopotentials which have been developed for a large number of metals.

* Permanent address: Physics Depariment, D. A. V. College, Kanpur-208001, India.
#% Address: Physics Department, University of Allahabad, Allahabad-211002, India.

(755)



756

In this paper, we report a theoretical study of temperature variation of ideal thermal
resistivity of alkali metals using various available model pseudopotentials [6-15] for
electron-ion coupling. The dynamical structure factor needed in the calculation is obtained
from the phonon dispersion curves deduced from modified Sharma and Joshi’s model [16]
which incorporates angular interactions between the ions on the lines suggested by de
Launay [17] and Clark et al. [18]. Formidable angular integrations are carried out by
a modified Houston’s six-term interpolation procedure [19]. Also included are the computa-
tions of the Lorentz number for these metals using the electrical resistivity values reported
in an earlier work [20]. The results of calculations are compared with available experi-
mental information.

2. Theory

The ideal thermal resistivity represents the resistance to the flow of heat due to the
scattering of conduction electrons by the thermal vibrations. Baym [2] has derived a varia-
tional expression for the ideal resistivity W; due to lattice vibration scattering. In the weak
coupling approximation, for cubic metals it may be written as

W= I a
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where Ly = n2k§/3e2. Here kg is the Boltzmann constant, m—the mass of an electron,
e—the electronic charge, n—the number of ions per unit volume, Z—the valency of the
metal and 7, is the relaxation time for the scattering of electrons by thermal vibration
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where § = h/ksT and ¢ = k'—k. In this expression, k and k' are the wave vectors of the
electron in the initial and final states, v, — the velocity of electron with wave vector k, kr —
the Fermi wave vector, Sg — the area of the Fermi surface, (k'|V|k) is the matrix element
of screened pseudopotential representing the scattering of an electron from state & to state
k' on the Fermi surface with the absorption of a phonon of frequency , and S(g, ) is the

dynamical structure factor of the ion system.
For a spherical geometry of the conduction band, the two surface integrals in Eq. (2)
can be reduced to a three-dimensional integral over ¢ so that the above equation becomes
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where
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and @ is the solid angle in the wave vector space.
In the one-phonon approximation, the dynamical structure factor S(g, ) is related
to the phonon spectrum through the relation [21]
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where M is the mass of an atom, and w,; and e,; are the angular frequency and polarization
vector of a lattice mode with wave vector ¢ and polarization index j. Use of Eq. (5) into Eq.
(4) yields
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3. Numerical computations

The computation of the temperature dependence of ideal thermal resistivities of alkali
metals (Li, Na, K, Rb, Cs) is made from Egs. (1), (3) and (6). The integration over g was
performed numerically and the angular integration was done by using a modified Houston
spherical six-term integration procedure [19]. The six directions of g used in the calculation
are: [100], [110], [111], [210], [211] and [221]. The values of effective electron-ion pseudo-
potential form factors of alkali metals are obtained from model potentials of Bardeen
[6], Heine and Abarenkov [7], Schneider and Stoll [8], Ashcroft [9], Shaw [10], Giuliano
and Ruggeri [11], Bortolani and Calandra [12], Shyu et al. [13], Lee and Heine [14], and
Sharma and Srivastava [15]. The structure factor S’(¢) is determined from Eq. (6) using
the phonon frequencies and polarization vectors derived from modified Sharma and
Joshi’s model [16] which takes into account angular interaction between the ions. The
angular forces are incorporated on two approaches, one that on de Launay [17] angular
force (DAF) model and the other on Clark, Gazis and Wallis [18] (CGW) model. The model
described elsewhere [20] involves five parameters, namely, two central force constants (ay, a,),
two angular force constants (K, K,) and an electronic parameter K,. These are determined
by two different methods. In the first method, they are correlated to the three elastic con-
stants in the long wave limit and two experimentally measured zone boundary frequencies,
v (100) and vy (3, 4, ), of the longitudinal and transverse modes travelling in [100] and
[111] directions respectively. The value of K, obtained by this method is referred to as
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experimental K. In the second method, the electronic parameter K, is determined theoreti-
cally using the quantum mechanical expression due to Overton [22]. This value of K, is
called theoretical K. The other four parameters are determined by relating them to the
three elastic constants and the experimental transverse zone boundary frequency vy (100)
in the [100] direction. The elastic constants and other relevant parameters fed into the
calculations are given in Table 1 of Ref. [20].

4. Results and discussion

a) Thermal resistivity‘

The results of the calculation of ideal thermal resistivities of the five alkali metals
(Li, Na, K, Rb, Cs) on three model psudopotentials (Lee and Heine [14], Ashcroft [9]
and Sharma and Srivastava [15]) are plotted in Figs. 1-5 against temperature on the loga-
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Flg 1. The ideal thermal resistivity versus temperature for lithium. First set, theoretical K.; second set,
experimental K.. Experimental points: X Rosenberg; & MacDonald et al.

rithmic scale together with the available experimental data. The results from other poten-
tials show similar temperature variation and are not shown in these figures. As in earlier
studies [20], the DAF and CGW angular forces with experimental K, give-similar results
for alkali metals. For the theoretical K, the values of resistivities obtained from the two
models also do not show difference and hence they are not shown separately in these
figures. The sources of the experimental data for thermal resistivities plotted in these
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Fig. 2. The ideal thermal resistivity versus temperature for sodium. First set, theoretical K.; second set,

experimental K.. Experimental points: X MacDonald et al.;

© Barman and MacDonald; 7 Cook et al.
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Fig. 3. The ideal thermal resistivity versus temperature for potassium. First set, theoretical K, ; second set,
experimental K,. Experimental points: @ MacDonald et al.
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Fig. 4. The ideal thermal resistivity versus temperature for rubidium. First set, theoretical K. ; second set,
experimental K.. Experimenial points: ® MacDonald et al.
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Fig. 5. The ideal thermal resistivity versus temperature for caesium. First set; theoretical K,; second set,
experimental K.. Experimental points: @ MacDonald et al.
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figures are listed in Table I. Except for sodium, there are not many measurements on the
thermal resistivity of alkali metals. The most comprehensive measurements on the thermal
resistivity of alkali metals in the low temperature range have been reported by MacDonald
et al. [23]. However, their data for lithium and sodium refer to two-phase mixtures of
unknown proportions. Recently Cook et al. [24] have presented reliable values for the
thermal resistivity of high purity sodium over the temperature range 4 to 360 K.

TABLE I

Temperature ranges for the experimental thermal resistivity data for alkali metals

Temperature range
Metal ) Source

Lithium 2-90 [a}
9-100 [b]

Sodium 2.5-16 [b]
4-90 [c]

40-260 [d}

Potassium 3.5-90 [b]
Rubidium 2-20 [b]
Caesium 2-15 [b]

fa] H. M. Rosenberg, Phil. Mag. 1, 738 (1956).

[b] D. K. C. MacDonald, G. K. White, S. B. Woods, Proc. R. Soc. A235, 358 (1956).
[c] R.Berman,D. K. C. MacDonald, Proc. R. Soc. A209, 368 (1951).

[d] J. G. Cook, M. P. van der Meer, M. J. Laubitz, Can. J. Phys. 50, 1386 (1972).

We notice from Figs. 1-5 that the temperature variation of the theoretical and experi-
mental curves is of similar nature, but they somewhat disagree in the case of lithium and
sodium at low temperatures. The disagreement is more pronounced in the case of lithium
which can be attributed due to the distortion of the Fermi surface. Further, the experi-
mental data for these metals in the low temperature region are not very reliable due to
martensitic phase transformation occurring in them [25, 26]. The experimental data for
lithium agree better with the theoretical values deduced from Lee and Heine model poten-
tizl over a considerable temperature range studied. For sodium, the calculated values
of the resistivity are substantially higher than the experimental ones up to about 50 K,
while at higher temperatures they show good agreement with experiments for the results
obtained from Sharma and Srivastava model potential. For potassium, at low temperatures
the resistivity obtained from Giuliano and Ruggeri potential lies closer to the experimental
values, while at higher temperatures calculations from Asheroft, and Schneider and Stoll
pseudopotentials give a better fit to the experimental data. In the case of rubidium, Schnei-
der and Stoll form-factors are found to give better agreement with experiments at low
temperatures. For caesium, the agreement between theory and experiments is better for
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Ashcroft, -and Schneider and Stoll model potentials.. An. overall surveéy of the.thermal
resistivity results obtained indicates that the Schneider and Stoll model potential gives
better agreement with the observations for potassium, rubidium and caesium, while for
lithium and sodium the results from Lee and Heine, and Sharma and Srivastava form
factors respectively lie much closer to the experiments.

b) Lorentz number
The temperature variation of the thermal resistivity at low temperatures is different

from that of electrical resistivity. This effect is usually represented in terms of the function
L = g,/W.T, known as the Lorentz number. This quantity must be constant for all metals

Lo

LORENTZ NUMBER (W-L DEG) X108
o,

162 AT : 1 L ] 1
2 S 10 20 50 100 200 300
TEMPERATURE (K}

Fig. 6. Temperature variation of the Lorentz pumber of alkali metals. Full lines experimental K,; dashed
lines, theoretical K.. Dotted curves show experimental measurements

if the conduction electrons were scattered elastically. This condition is expected to be
true at higher temperatures.

Using the electrical resistivities calculated in the previous paper [20], the Lorentz
number for alkali metals are evaluated. In Figs. 6, we show the results of the calculation
of Lorentz number on the basis of Giuliano and Ruggeri model potential together with
the values deduced from experimental data on electrical and thermal resistivities. The
results from other potentials are similar to those obtained from Giuliano and Ruggeri
model potential and are not shown in these figures.
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We notice from the figures that the theoretical Lorentz number curves show approxi-
mately the same temperature: behaviour as has been found experimentally, but at low
temperatures the experimental curves séem to fall considerably below the theoretical
curves. Maximum disagreement with experiment is found in the case of lithium. _Flirther,
the Lorentz number results show marked variation with temperature in sharp contrast
to Wiedemann-Franz law. In the intermediate temperature region, the experimental curves
show dip and have the tendency to fall below the theoretical values. This may be attributed
to the extra thermal resistivity produced by inelastic electron-electron scattering. At higher
temperatures where the clectron scattering is. mostly elastic, the calculated curves tend .to
reach the Sommerfeld value of 2.443 x 10~-® Watt Ohm deg2 and the Wiedemann—Franz
law is obtained. )

The disagreement between theory and experiment can be ascribed to the neglect of
various anharmonic effects such as temperature variation of elastic constants, multiphonon
processes and change finvpscudopoten'tial form. factors due to thermal expansion. The
present study shows that the thermal resistivity of metals depends more sensitively on the
pseudopotential form factors than does the electrical resistivity. As such the errors intro-
duced by various anharmonic effects is expected to be more serious. In lithium [25] and
sodium [26] at low temperatures, the situation is further complicated by change of crystal
structure due to martensitic transformation below about 80 and 40 K respectively. This
transformation causes unusual variations in the elastic and thermal properties and makes
doubtful the interpretation of our results based on simple body-centred cubic structure
at the lowest temperatures. The electron-electron scattering is another mechanism by which
heat transport may be affected but not the charge transfer in metals [27, 28]. It is possible
to explain some deviation in magnitude and temperature variation of thermal resistivity
in terms of electron-electron scattering.
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