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INELASTIC NEUTRON SCATTERING FROM FERROELECTRICS
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Using the method of double-time thermal Green’s function, an expression is derived for
one-phonon differential cross section for the coherent inelastic scattering of thermal neutrons
by a ferroelectric crystal from a modification of Silverman and Joseph Hamiltonian aug-
mented with dominant fourth- and fifth-order anharmonic terms in the lattice energy. The
scattering function is shown to have a Lorentzian form due to anharmonic terms: Expressions
for the frequency shift and the width of the maximum of the peak are' obtained.

1. Introduction

The study of finer characteristics of energy spectrum of neutrons inelastically scattered
by a crystal is quite useful from the point of view of dynamical properties of crystals [1].
It is found that in the scattering of slow neutrons from a crystal, the coherent inelastic
part consists of a series of peaks representing the absorption or emission of a number of
phonons. In the harmonic approximation, these peaks are infinitely narrow and are de-
scribed by d-functions centred at phonon frequencies. The elastic term gives rise to peaks
in the energy spectrum of scattered nautrons at the Bragg angle [2]. For a real crystal,
the presence of anharmonic forces leads to the diffusion of peaks and the peaks are broad-
ened due to the finite lifetime of phonons on account of anharmonic interactions between
normal modes of vibrations and are shifted relative to those predicted by the harmonic
approximation. A study of shape, shift of the maximum and the width of the peaks is
obviously of considerable interest for several different problems in solid state physics.
The observed width of the peaks can give a direct measure of the phonon mean lifetime
being the inverse of it. ,

Weinstock [3] in a fundamental paper first gave a basic theory of neutron scattering
by crystals by considering processes in which a neutron either creates or absorbs a single
phonon, i.e., one-phonon processes. It has been amplified in various aspects by a number
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of workers [4]. Within the last few years, the coherent scattering of thermal neutrons
by anharmonic crystals has been theoretically studied by several authors [5-7] using
different approaches. Van Hove [8] used time-independent perturbation theory at zero
temperature. Kokkedee [9] has extended this work to finite temperatures using time-depen-
dent perturbation theory. Baym [10] gave a different treatment for neutron scattering from
an anharmonic crystal which involves the evaluation of the Fourier transform in space
and time of the time-relaxed displacement correlation function, the phonon propagator.

Silverman and Joseph [11] have propounded a Hamiltonian for displacive ferroelectric
crystals in the paraelectric phase by making use of available information about the tempera-
ture dependence of lowest transverse optic mode. Jaiswal and Sharma [12] have used this
Hamiltonian to investigate the electric field dependence of the Curie temperature. Nettleton
[13] has modified the Silverman-Joseph Hamiltonian to include effects due to fourth-order
anharmonic terms in the lattice potential. :

In this paper we report a theoretical study of one-phonon differential cross section for
coherent inelastic scattering of neutrons from a ferroelectric crystal using the method
of double-time Green’s function [14] by considering fifth-order anharmonism of the lattice
vibrations. In Section 2 we give a general formalism of the scattering cross-section. Section 3
describes a modification of the Silverman-Joseph Hamiltonian with allowance for fifth-
-order anharmonicities and presents evaluation of double-time Green’s functions by the
equation of motion method. In Section 4 expressions for differential cross section for scat-
tering by acoustical and optical phonons are obtained.

2. General formulation

From the well known Fermi scattering theory, the expression for the differential cross
section per unit solid angle and per unit interval of outgoing energy & of the scattered neu-
tron for coherent scattering can be written [4, 15]

d? 1
Ocoh == gﬁs(g, o), 1)
0

dQde h

where the scattering factor .S(Q, w) is given by
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In these equations, ¢, and q, are the wave vectors of the neutron before and after scattering,
Q = q,—4q, is the scattering vector, hw is the energy transferred from the neutron to the
crystal, bg is the scattering length of the nucleus K, R(sK) is the position vector of the
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mean position of the K™ atom in the s™ unit cell and u(sK) is the displacement from the
equilibrium position of that atom. The position vector R(sK) can be written as

R(sK) = x(s)+r(K), 3

where x(s) is a crystal translation vector and the vector #(K) describes the position of atom
K in the unit cell, u(sK; ¢) is the operator of displacement in the Heisenberg representation

u(sK; 1) = 4P y(sK ; 0)e I¢/DHE 4

H being the Hamiltonian of the system and the angular brackets ¢...> represent the canoni-
cal ensemble average of the expectation value of an operator, namely

<0 = Tr (e”P0)/Tr (¢7%H), &)

where Tr denotes the trace of the expression and § = 1/kgT, kg being the Boltzmann con-
stant and T the absolute temperature.

The correlation function in Eq. (2) can be converted into a form involving simpler
correlation functions by following the approach elaborated by Maradudin and Fein [6]
and Baym [10]. The result is

<e—iQ . u(sK;t)eiQ . u(sfl(';o)> = e—[W(K)+W(K')]e<Q - u(sK;t)0 - u(s'K';0)>+ . (6)

where W(K) is the Debye-Waller factor exponent corrected for anharmonic effects and
the dots represent the time-relaxed correlation functions arising from anharmonic terms
in the potential energy of the crystal. Expressions for them are given in Maradudin and
Fein [6]. The contributions from these terms are at least two orders of magnitude smaller
than the anharmonic contributions to the average (Q - u(sK;¢) Q - u(s'K’, 0)>. To the
lowest nonvanishing order in the anharmonic interactions, the dotted terms in Eq. (6) can
be neglected and the scattering function S(Q, w) can be expanded in power of atomic
displacements. This gives

S@, ®) = 5x(Q, ) +54(Q, @)+ ..., 0]
where
So(Q, @) = N?6(0)A(Q) 1Y, bye™ " Fe2 @2 (8a)
K
and
$1(Q, w) = 2l Z Z bybl.e~FUO+W N, =10 [RGK) - R(s'K)]
T
sk s'K’ )
x | dte<Q -u(sK;)Q - u(s’K’; 0)>. (8b)y

A(Q) is equal to unity if Q equals a translation vector of the reciprocal lattice and vanishes
otherwise. The first term in the expansion (7) represents coherent elastic scattering from
a crystal involving no phonons, because of the factors A(w) and A(Q). The second term
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describes the coherent inelastic scattering of neutrons from the crystal by one phonon
processes. For temperatures well below the Debye temperature, the one-phonon progesses
give dominant contribution to scattering cross-section. It is with the evaluation of S,(Q, w)
that we will be concerned in this paper.

__The atomic displacement u(sK; 0) = u(sK) can be expressed in terms of normal
modes of yibration as

h 1/2 ]
K) = e . K, kDA, lk'R(sK)’ 9
u(sK) E <2MKkaj> e(K; kj)Ayse ®)

TR

where N is the number of unit cells in the crystal, o is the frequency of the normal mode
described by the wave vector k and polarization index j, (K, kj) is the polarization vector
and A,q = ak1+a ~kjs Bkj and a,” being the phonon annihilation and creation operators.
The scattering function then becomes

$4(Q, ») —'—— Z Z Z Z beble —IW(K) + W(K")]

g  1/2 N 1/2
( ! ) ( 1 ) [(Q - (K, )} {Q - (K, K]

MKMK’ i 40)"1'({)1"]"

X :e—i(Q—k) . R(sK)+i(‘Q+k') . R(s'K’)‘ j’ ‘ dtelwt<AkJ(t)A,::JI(0)>- (10)

For convenience in what follows we use only one index k for pair of indices &j. From
the cyclic boundary conditions, Eq. (10) can be written as

N
5@, 0) = o~ Z AQ—A(Q+K)F(Q, FX(Q, —K)
T :

o«

1l .
x ( ) f T ADATO), an
4wy ) :
where
B \1/2 i .
F(Q, k) = Z by (ﬁ) [Q-e(K, k)]e‘W(’_‘)e“i[(Q"‘)'R(K)]. (12)
K
K

_Equation (11) shows that the problem of finding cross-section’becomes one of evaluat-
ing ‘the Fourier coefficients of the correlation function {4(¢)4; (0)>. These are determined
by the dynamic properties of the system, i.e., by its Hamiltonian and can be evaluated by
several techniques. Here we use the method of double-time Green’s function as elaborated
by Zubarev [14].
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3. The. Hamiltonian and Green’s function.

In contrast to other systems in ferroelectrics the frequency correspondlng to trans-
verse optic mode W1th zero wave vector is imaginary in the harmonic approximation and
a lattice 1nstab111ty results. The stabilization of this mode can only be brought about by taking
into consideration of anharmonic interactions between the ions. It has been shown [
that the lowest-order anharmonic interaction that can stabilize the soft ferroelectric mode
frequency is of the fourth-order. In the present work, we include all lowest-order effects
of anharmonic interactions through ‘the fifth-order of anharmon1c1ty ’

The Hamiltonian of the ferroelectric crystal is constructed from the crystal model
proposed by Silverman and Joseph [11] by augmenting it with fourth- and fifth-order
anharmonic interaction terms involving ferroelectric optic modes of lowest wave vector.
These processes are selected because the soft modes of lowest wave number, due to their
large occupation number; should cause appreciable scattering of neutrons. The harmonic
contribution to the Hamiltonian H; can be wrltten as

Hy = ;71w1‘2(a2+02+—)+ 2 hog(ay™ ag+ D) +3 [(05)" —(@328)°], (13)

where superscripts o and a denote the optical and acoustical modes, respectively. All the
long wavelength soft optic modes which become unstable in the harmonic approximation
are lumped together into a single mode of zero wave vector with normal coordinate ¢gg
and conjugate momentum p§ and are assigned as imaginary frequency iw$.

In the problem considered here the main role is played by the anharmonic interactions.
Using Szigeti’s [16] theorem which asserts that for a crystal in which each atom is at a centre
of inversion symmetry, the coordinates of the optical modes come in pairs, the anharmonic
Hamiltonian H, which ‘includes dominant third, fourth and fifth-order anharmonic
terms in the expansion of the lattice potential energy in power of ionic displacements can

be written as
(‘10)2
F()AAYT + G ()4Ay*
Z:(Cokwkl/2 \/N ® Zwk 2 g

k

5 o O S nol h3/2 ’
4 Z (qO) Ga(k)AkA Z qg« ¢(k17 k2: ks)AklAszza
o, N
k

2
(wklwkzwh)l/ \/

kysk2,ks3
: : B3/2 - (k | R
15 25 A3 k4l
e (wklwkzwk;; 1/2 \/N 2%ks
‘“g(kla I"Z, k3 k4)AZ Az zAZ
1/2 2 190k2 k3 kg
: : Wy, 05 0.2
kx,kz,ksylu( SR k4 \/
Z (o, 05, 0 wF 1’/’2 \/ﬁ n(ks, ks, ks, k4)Ak1Asz23Ak4' (14)
k1k2 ks k4

ki,k2,k3,kq
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Here the quantities F(k), G°(k), G°(k), ®(ky, ko, k3), wlky, ks k3), &y, Koy k3, k) and
n(ky, k,, ks, ky) are Fourier transformed third, fourth and fifth-order anharmonic cou-
pling constants. These terms generate three and four-phonon processes and make significant
contribution to the lifetime of optical as well as acoustical phonons. From Egs. (13) and
(14) the Hamiltonian of the system is given by '

H = H,+H,. (15)

We now introduce one-particle retarded double-time Green’s functions [14] of the
system for the acoustical and optical phonons as ;

Gie() = €AW Ay = —i0(r) <[4, 47 (O], (16a)
and
GR(f) = CAND; AL (0)y = —i6(D) <[4UD, A" (O], (16b)
where 6(r) is the usual unit step function: 6(t) = 1 for £ >0, 0(z) = 0 for t < 0. The
correlation function can be expressed as [14] .
Jue() = <ADA:(0)) = _j dwe’ Ty (w)e” ", an

where Ji{w) is the spectral density function of the related Green’s function and is given
by

Jg(w) = lim

&0

s [o(o 19~ Guclo— 0] 19)

Gy(®) being the Fourier transform of the double-time Green’s function.
Differentiating expression (16a) with respect.to time 7, the equation of motion for
Green’s function Gy (t) is

d :
th — Gult) = hé() <[440, 437 (0)]>+<[AXD, H]; 4 (0))- (19)

For the Hamiltonian (15), using the commutation property of the operators, the above
equation can be written as

d
ih - Gi(1) = hoi(Bi®); 4" (0)), (20)

where B, = ay—aZ,. Differentiating Eq. (20) again with respect to time argument ¢, we
obtain

2

d : : .
~h 23 Gul)) = haots(1) <[BYD), AT (0)>+ i [BYD, H]; 47 (0)-. €2y

The operators 4; and B, satisfy the commutation relation

[Bka Ak’] = 25k,—k'= (22)
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which follows from the commutation relations for creation and annihilation operators.
This gives

2

d a a a a 4 o a
o2 Gue(t) = 208(6)0;, _p +(0}) G (1) + N (99)*G (k)G (%)

4 ] hop \'?
—i00 2 dboti ke -0 (25 T 040, 47O

o a
k1 ka
ki,k2

6 h2w2 \2
e ﬁ Z qon(ky, ky, ki, —_k)( .= a') A Ak Az AT (0)). (23)

1O, D

ki,ka2,k3

We now factor the expectation values of acoustical and optical operators so that
the above equation may be written as

2

4
Gi() = 2040(1)0, — +(03)* Gl (1) + N (45’ G (k)G ()

d 22
0ty 2k, by, — ) (% )1/2 CAR (D)) <[ A2 (D), A%
—1 ()\/—]—\7 do 1> A2y 602, 22 k1( )> <[ kz(t)’ K (0)]>
ki k2
thZ 1/2
\/ = Z qon(kys ko, ks, —k) (wk,w?,z k;) <Ak,(t)> AL (DAL AT (). (24)
kikz2,k3
The Green’s function
Gl(filzsk' = <<A22A23; Aa’+(0)>> (253)

appearing in the last term is a third-order Green’s functlon To evaluate it we introduce
the following retarded Green’s functions -

Gty = €Bi 43,5 4L (0)), (25b)

Gl(ijlzak' 5 <<A22BI£:3; AZ’+(O)>>’ (250)
and a

Gitdw = CBLBL; 457 (0)). (25d)

The equations of motion for these Green’s functions are

d
h d Gl(czkak . hwszk2k3k +hwk3Gk2k3k’ (26a)

d a a ) s] h :
ih — 2 Gk2k3k = hwkg.Gl(clegk"l'hwszlgh):;k + — (‘IO)ZGa(kz) ey Gl(cilzg,k'
k2
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hwz N 1/2 .,.10 ) (1")" SO
\/ q0¢(k k2’ kZ) a)a <Ak1(t)>szk3k’
k1' k2’

(315

) h 1/2 .
. \/LN Z ke Ko s k) (“”‘)a s ALY CAL AL AL A O,

ky'ska" ks’

(26b)

d
ih = Gl(cik):;k' = hw:zGl(cj’Zﬂ(' +hw:3Gl(ci113k + = (q'o) Ga(k3) I(Cil)csk'

dt : k.s
hoy \2
\/ Z qo®(ky, k3, — kz)( kl,ﬂ);z’) : <Ak1(t)>Gl(cil?',3k’
ki’ k2’
6 ’ ’ h(wa)1/2 ‘ o a a a a
+ \-/T_V' Z qon(ky, ka, k3, —k3) (Tak—z )1/2 {45, (07 K4iey _k3'_Ak2§ A (0)Y,
7%t 73 %Y
ki’ ko' k3’
(26¢)
d
ih o G,((‘:,zak = hwksszksk +hop, G
4 h 4 e h ;
+ N (49)*G*(k3) 0_’11:3 G:‘ciizk' + N (9%)°G (k2) leac; G;{R;k'
i Szl [ hop N2 2
+ :/TTT Z go@(k}, ks, —k3) (;);10)22) (A (D)>Giiesr
ki',k2’
a)k = ° 3)
\/ E qo¢(k 2 —kq) k wzz’ <Ak1(t)>szk3k’
ki’ k2’ )
6 h(wd)'/? . .
+ ﬁ E gon(ky, ks, k3, —ks )( 2 o) (Ap (D> CA; Ab By ART(0))
k1 kz' ka' .

. )1/2 N .
+ LR Z gon(kl, k, ks, — k) (———( asz N (AR (D) KBy, Ar Arys AT (O)).
Wy Wy Wiy
k1’ k2’ ks’

(26d)
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The fourth-order Green’s functions in the above equations can be decoupled: into

sum of products of second-order Green’s functions [17, 18]. When such a decoupling
has ‘been done, transformation to a Fourier representation gives

a
wkék, -k

[ o (@}~ < (qz)ZGa(k)] Gix(0) =

4 . . hop \'/?
+ \7]_Tf qoP(ky, ka, ~k) ° ot /) <Ak1>Gk2k ((D) .
ld

k1 ;:z
kika
hwp)?
N Z qorl(kla k29 k37 _k)( * )1/2 <Ak1>Gl(ciIZ3k'(a))9 (27)
ki,ka,k3 kl kZ .
where
F(k25 k3, (0) Z - h
G (@) = —2 2 on(—ky, —kyy ~ks, K
kaSk( ) \/N Fararan qon( ! 3 1)( kl(ukzwk:;(’oh )1/2
X A AD); 470D (28)
with )

a a a)2+a)3
F(ky, K3, 0) = 6[<ALT ALY+ AT AL D] —5—2 *

"(wkz‘*'a’kg)_
OTCAR A1) <A 4] e
( k2 T 3)
+O[CBLAL) + <A BT 2 2 } (29)
k24 ks k3 “k3 (wk2+wk3)2 wz_(wkl_._wzs)?
If we substitute Eq. (28) into Eq. (27), we get
- Ge(w)
i Sy, o7 o
- 2 , 4 2 4 NENZ s i
[t~ e > dot k-0t -20inti) |
ki
(30)

where

2

3 h
Mi(w) = i Z (@o)nks, bz, ks, =R —— o (AR (ky, kg, @) (31)

a

k1 k2 ks)
ki,kz k3
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The explicit expression for Mi(w) can be obtained by writing
Mi(w+ie) = 4i(w)—il(w). (32)

The real part Aj(w) represents the shift of the frequency, while the imaginary part
Ii(o) gives the half-width of the response function of a mode. From Egs. (31) and (32),
we finally obtain

. 18P R h2(o?
Ak(w) v Z (QO)ZIVI(kp kZ’ k37 _k)lz o (a k)a <Azl>
N (0}, 0%, 0,)
ki1,k2,k3
a a2+w33
{[<Ak+Ak2>+<A Ay] oo
(a’k; %,)
a+ 4a a a)ks
+ [<Ak3 k3> - <Ak2 >] } s (33)
(a)kz a)ks)
and
2( o)
I(w) = _3(60) (@) In(ky, ks, ks, —K)I* {Ap>
( k1 kzwk;;)
ki1,k2,k3
x {[(ALF ALY + (AT AL Y] (0f, + 0} o[ 0" — (@}, + 0},)*]
F AL A3, — <AL 45T (b, — 03,)5[ 0" — (0}, ~ )]}, (34
in which P stands for the principal part and &) = 1 for @ > 0, g(w) = —1 for v < 0.

Similarly if we proceed with the equation of motion of Green’s function (16b) for opti-
cal mode and follow the procedure as used above, we obtain the following equation for
the determination of Fourier transform of the Green’s function

(]
00,k

i
[0 -ot- { aire | oiven =

h1/2
\/N E QOQP(kla ky, — )( kl kz k)1/z lek;k(w)

ki.k2
(o] » h
+ \/—]T’ gol(ky, ko, —ko, —k)( oo )2 Gre(@) <4y 43, (35)
@y, D,
kik2 B

where Gﬁ,’czk,(co) is the Fourier transform of the third-order Green’s function

Gim () = CAL AL 4270, (36)
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and is given by

1/2

Fks, k ,w)z : .
G l(w) = —== go¥(— k1, — ks, 1) PCRYTE 45, (1); 457 (0))q,
k1 kz k1)
(37
with
o o o w01+w02
Fllk, ke, ) = 6[CAR AR >+ (AR A7) —— e
_(wk1+wk2)
R Wy, — O
FOLCAL > = (AT L] 2
_(a)k1_wkz)
[43] [42]
+6[<B2 ASHS + AT B { S
[ k1 k1 < k2 k2>] wz_(wzl_l_wzz)z wz_(wzl_wzz)z (38)

Combining Egs. (35) and (37), we find an expression similar to Eq. (30) for the acoustical
phonons

Giut@) = o

,: — ()’ — —((10) G°(k)— \/—N Z qol(ky, kyy —ky, —k) ’
k1,k2
X (wk o) — A4y >~ 2cukMk(w)]
‘ (39)
where
.3 h

Mj(w) = N Z (@) 1w(—k, ky, k)| (—k o o ) F(ky, ks, o). (40)

kik2
In this case the shift of the frequency 43(w) and the half-width I W(w) of the response
function are given by
h
( 1 ©2)

o 18P 2
4(w) = 5 Z (q0) Iw(—k, ky,

kik2

.
cokl +co,‘§2 : =

o

i (wk1 wkz)z

{ [T 42> +< 4] 42, >]

w; -
+ AT ALY — (AT 4 o
[< o — Az, k1>] __((Dkl wkz)z 0 (41)
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and

- h

(wioy,o4,)

0 187.5 032 2
T OISE—E Q) Z (90)°19(=k, ky, k)

ki,k2
X [CART AR + <AL 48,0 (@f, + 03[0 — (o0f, + 0f,)]
+ [(AZ;AI‘6)2> i <Al:1+Al‘21 >:I (wzl i (1);:2)5[(1)2 i (w21 - wl‘:z)z__]' (42)

Having formulated the Green’s function, we can easily obtain the correlation function

using the prescription (17) and hence the expression for the differential scattering cross
section.

4. Inelastic neutron scattering cross section

 We evaluate separately the acoustical and optical phonon contributions to the scatter-

ing cross-section. From Egs. (17) and (30) the correlation function corresponding to the
acoustical mode is given by

2(Da5 —t eﬁﬁw
AXDAT0)S = — Tk PO M
<4 (D4 (0) z m w(eﬂﬁ”—l)
e—iwt
X 4 R 4 hwz 1/2
[wz—(wz)z— = (@G- ﬁvz 23k ks, —k)( rar) <A
ki,k2
—2wpdi (@) + 2iwi T ,*;'(a)):l
oDy [
B prs (eﬁﬁw_l)
e Ti(w)
o 4 PR Tt \IF2 . (43)
a\2 o\2 A o o
{l:wz_(wk) - —1\7(40) Gk~ NG Z qo(ky, ks, —k) (w;1w;2) A

ki.ka

—260242(60):'2 +4(oR)’T 22(60)}
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where A%(w) and I'j(w) are the shift and width of frequency and are given by expressions
(33) and (34) respectively. Substitution of Eq. (43) into Eq. (11) gives the scattering factor

Sl(Qa CO) as

s YN so-01F@ et | do o

s W) = —5 . ) (23] T REa a4
1(Q ) 7'Cz k @ (e”m——l)

k -
I'i(w
« H() - (44)
2 a2 4 02 a 4 o hw; P
w” —(wp)" — N(%) G*(k)— ;/T\—f j qop(ky, kay —k) wklwz (Alq>
) ki,k2
2
—2sz:(w)] +4<w:)2r:2(w>}
With this result, the one-phonon differential scattering cross section becomes
dz Ocon N ¢, 2 e
et F(Q, k)|*w} ; e
dQde  7°h qq Z' Q. Bl i, f 4o Cre )
kj ]
I';(w)

x = = y . (45)

{[wz (@)~ N (40)°G (K, j)— \W—V Z qod(kyjis kzjas —kj)

kijr.k2j2

2

. ho kj 1/2
g ( ) <Az,h>—2wz,~Az,-(w>}

wkl]l kz]z

i) )
where the vector k is related to the vector Q by

k=0Q+g, (46)

g being the translation vector of the reciprocal lattice.
In a similar way the one-phonon differential scattering cross section for the optical
mode is obtained as

d’s} ho_ N ‘11 ) et
) co F ] k 2
deS ZI (Q )I wk_] f dCO( BHw 1)
kj(w)
X = ;i ) 4 6 . 47
{[m _((DZ,') i N(q?))Go(kj)— I/TT/ Z qol(kij1s kajz, — Ky js, —kj)
kiji.k2j2

h B 2
Fa o 1/2 <A;:.J'1AZ1J'1> _zwziAzf(w) +4(CO;])2FZ§(G))
(whhwkz.iz)
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Expressions (45) and (47) for sufficiently small values of 4,;(w) and I, {(w) compared
with w,; give a number of peaks in the energy distribution of scattered neutrons. As a re-
sult of anharmonic interactions, the one-phonon peaks are broadened and their positions
are shifted from the unperturbed phonon frequencies. The shape of the peaks is of Loren-
tzian form of width I'y j(w) centered about the point = (o, ,+A_k ;). However, if the dependence
of I' (w) and 4z () on wy; is considerable, there will be deviations in the line shape from
that described by a Lorentzian function; in particular, asymmetry may appear in the
energy distribution of the scattered neutrons. Equations (33), (41) and (34), (42) give
expressions for the shifts and widths of phonon frequency which are frequency dependent
and are obtained here as a direct consequence of the choice of the Hamiltonian. If the
anharmonic forces are set equal to zero, the peak reduce to familiar two-delta functions,
corresponding to neutron scattering with energy loss and energy gain respectively.
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