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Ton-ion overlap interaction plays a dominant role in governing the lattice dynamical
behaviour of crystals having significant ionic-size. It is abundantly clear that the ionic interac-
tion is screened out up to a few neighbours due to the presence of the conduction electrons
in metallic crystals. In the present communication expressions for ionic-interaction energy
(), pressure (P1) and bulk modulus (By) have been derived assuming the screening potential
first used by Yukawa and later developed by Krebs. It has been assumed that this screened
potential couples first two neighbours of the cubic structure. Computations of these quantities
for seven body centered and nine face centered cubic metals suggest that the suitable screening
is described by compromised model potential scheme whereas Bohm~Pines and Thomas~
~Fermi schemes represent the limits.

1. Introduction

The ions of non-simple cubic metals, namely the noble metals, the transition metals
and the rare earth metals, possess significant size. Electronic structure of these metals reveals
the hybridization of various levels. Obviously the ionic-overlap interaction should play
a significant role in determining the lattice dynamical behaviours of these metals. It is
difficult to evaluate the overlap interaction between the ion-cores from first principles.
Generally Born-Mayer potential is used to represent this interaction but this potential is
more suitable for ionic-crystals. Recently Moruzzi et al. [1] have reported that a fairly
good explanation for cohesion in metals is given by the electron-screemng phenomenon.
As a matter of fact the electrons are responsible for the various physical and chemical
properties of the metals. The screening among ions due to the conduction electrons has
been described by Thomas and Fermi (TF) [2] and Bohm-Pines (BP) [3] schemes. Yukawa
[4] has developed a theoretical explanation for the nature of the nuclear forces i In terms of
an empirical screened nucleonic potenttal Similar type of a screened Coulomblan potential
with suitable parameter has been employed by Bhatla [5], Krebs [6] and Cheveau [7]
in their lattice’ dynamical studies of cubic metals.
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The present communication deals with the derivation of the expressions for the ionic
interaction energy and subsequently the expressions for the ionic-pressure and ionic-bulk
modulus have been derived for the bce and fcc metals. The numerical values thus
obtained are analysed to decide in favour of the most suitable expression for the ionic
screening in cubic metals.

2. Theory .~

The screening parameter (K,) limiting the range of the ionic interactions may be expres-

sed as
K, = B(yo/ao)'*Kp, 2.1)

where Ky is the Fermi-wave vector, y, the radius of the atomic sphere, @, the Bohr-radius
and B denotes a multiplying factor. Various values to § have been attributed by different
workers [2, 3, 8, 9] which may be quoted ‘as -

B = 0.814 Thomas-Fermi [2] scheme,

g = 0 353 Bohm-Pines [3] scheme,

p = 2/n . Compromised Model Potential [8] Scheme,

p =04 Ho model Potential [9] scheme.

The screened Coulombian potential ¢ coupling the neighbouring ions may be written
according to Krebs [6] as '

1
¢I g ’; eXp (_Kcy)’ . . (22)
where y is the ionic separation. The screening makes this interaction effective up to second
neighbours leading to the following expressions for the interaction energy () per ion
E; = 16¢*/a \/5 exp (— K a''?) +(6¢%a) exp (— K,a''?) bec, (2.3)
E; = 24¢’/a 2 exp (—K}a''?)+(6¢%/a) exp (—Kpa''?) fec, 2.4)

where a is the lattice constant, and e is the electronic charges.
The parameters K; and K, for bec lattices depend on the screening parameter K,
and the lattice constant a i.e.

3
K, = \/Tal/ch;' K, = a'’K, (2.5
For fcc lattice these parameters K; and K; may be expressed as
3
| = ‘/7 a'’K.;  Kj=a'’K, 2.6

The screening parameter K, may be evaluated using equation (2.1) with different
values of B. In the present calculations we have used B’s as given in Thomas-Fermi [2],
Bohm-Pine [3] and compromised model potential [8] schemes. The pressure (P)) and the
bulk modulus (B;) are expressed as,

P = —0Ej0Q, B, = —Q0dP/0R, Q.7
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where Q is the atomic volume of the lattice concerned. Assuming the validity of the expres-
sion (2.7) and the sphericity. of the Fermi surfaces we.can derive the corresponding expres-
sions for pressure (P;) and bulkmodus (BI) associated with-each ion. These expressions
may be written as:

P = —e¢ [(16K1/3 \/3 a’yexp (= K1a1/2)+(32/3 \/3a )exp( =K;aty o

+(2K,/a""?) exp (— K,a''?) + (4K ,/a?) exp (— Kza”z)] bec, (2.8)
P, = (—32¢%/\/2 a®) [(K}/2a** + 1/a] exp (— K\ a'?)
—(8¢*/a®) [(K3/2a"* + 1/a)] exp (—~ Kpa'’?) fec, @9
By = (—¢*/3a*) [(8/3 /3) {aK?+9K ,a"> +16} exp (— K,a'/?)" -
+ K, {Ky(a+2a")+(16+7a"%)} exp (— K ,a"?)] bee, (2.10)
B =(~e %/3a )[{SaK’z/\/2 +72K1a'?] /2 +128/,/2} exp (- K}a'/?)
+{2aK2+18Kja'’? +32} exp (— Kya"/?)] fec. 2.11)

It may be recalled that most of the pseudo potentlal approaches for lattice dynamical
studies employ the local forms of the potential which are valid in the approximation of
nearly spherical Fermi surfaces. Moreover K, is asumed to be volume independent
while deriving the equations (2.8) to (2.11).

3. Results ]
For the three different values of f§i.e. 0.814, 0.353 and 2/ the overlap interaction ener-
gy, pressure and bulk-modulus per ion are calculated and are enlisted in Table I, IT and
111, respectively. The bec metals chosen for the present study are, V, «-Fe, Mo, W, CR,

Tonic-inferaction -energies (Fy) per-ion for cubic metals in units of 1022 ergs

. Known values ‘

Cubic metals 8 =03814 f = 0.353 B=2n for total Ey Reference

S | = ; = : , I SR
' 0,868 | 13558 2,489 8.290 [19, 26
a-Fe 1.114- 15,771 | 3,076 | 6.725 19, 26]
Mo ‘ 0,812 13.029 | 2349 10,815 [19, 26]
w 0,795 12.972 | 2.310 14.021 [19, 26]
CR ‘ 0.464 ‘ 9.318 1.464 ‘ 5.564 [19, 26]
Nb 0.683 11.742 2.032 — [19, 261
Ta ‘ 0.679 s | 2034 | 123860 (19, 26]
Cu ' 1.138 16.841 3.149 5.647 {19, 26]
Ag ‘ 0,746 | 13.013 ‘ 2.197 4.789 [19, 26]
Au 0.759 13.149 2.230 5.724 [19, 26]
Pd 0.887 14.464 2.547 6.468 [19, 26]
Ni 1.243 17.787 3.398 ‘ 7.031 [19, 26]
Al [ 0.778 13.357 2.278 5.174 [19, 26]
Pb 0.374 8.593 1.223 3.234 [19, 26]
Th ‘ 0.339 8.109 1.126 ‘ 8.694 [19, 26]
Pt l 0.861 | 14.205 | 2.849 8.457 [19, 26}
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TABLE II
Ionic pressure (Py) per ion for cubic metals in units of 10'? dyne/cm?
Cubic metals B = 03814 B = 0.353 B=2n
\'% 0.0672 0.6370 0.164
Fe 0.1056 0.9083 0.248
Mo 0.06009 0.5805 0.148
w 0.0578 0.5679 0.142
CR | 0.0225 0.2688 . 0.601
Nb 0.0443 0.4562 0.112
Ta 0.0441 0.4567 0.112
Cu 0.1117 0.7718 0.2131
Ag 0.0525 0.4274 0.1074
Au 0.05408 0.4376 0.1104
Pd 0.07145 0.5439 0.142
Ni 0.1312 0.8759 0.247
Al 0.0566 0.4535 0.115
Pb 0.0158 0.1689 0.362°
Th 0.0133 0.1487 0.0313
Pt 0.0677 0.5218 0.155
TABLE III
Tonic bulk-moduli (By) per ion for cubic metals in units of 102 dyne/cm?®
B=1/3 Ref. for elasti
Cubicmetals | B = 0.814 B = 0.353 B =2 - +\26/‘1z) PR
|
\' 0.1401 1.0763 0.3489 1.552 [20]
Fe 0.2176 1.5016 0.4961 1.679 [21]
Mo 0.1248 0,9824 0.3139 2.619 [22]
w 0.1201 0.9610 0.3031 3.1078 [22]
CR 0.0475 0.4609 0.1298 1.5233 23]
Nb 0.0923 0.7752 0.2383 1.7133 [20]
Ta 0.0915 0.7760 0.2386 1.919 (241
Cu 0.2163 1.5676 0.4704 1.371 [25]
Ag 0.1044 0.873 0.2401 1.036 [26]
Au 0.1075 0.894 0.2467 1.729 [271
Pd 0.1406 1.108 0.3160 1.931 1281
Ni 0.2525 1.777 0.5430 1.836 [261
Al 0.1124 0.926 0.2569 0.7607 28]
Pb 0.0328 0.349 0.07144 0.4816 [26].
Th 0.0279 0.307 0.07144 0.577 [29]
Pt 0.1336 1.0637 0.3445 2.827 [30]
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Nb and Ta. The fcc metals for which the above mentioned quantities are calculated are
Cu, Ag, Au, Pd, Ni, Al, Pb, Th and Pt. For estimating the electronic contribution towards
the binding energy and bulk modulus, the known values of the total cohesion-energy
and that for the total bulk-modulus [B = 1/3 (Cy; +2C,,)] are recorded in the last columns
of the Tables I and III.

4. Conclusions

In the Thomas—Fermi scheme [2] the repulsion between the conduction electrons
has not been properly accounted for and therefore it overestimates the screening effect
leading to extremely short screening radius [10]. Present author [11] has also reported
that this scheme (TF) does not account for the required cohesion in metals. Langer
and Vosco '[12] have introduced the quantum-mechanical factor f(z) for correcting the
TF scheme but the situation is not improved at long wave-lengths. Various studies [13, 14,
15] have reported that the Bohm-Pines [3] scheme based on the collective oscillation ap-
proach is suitable for most of the metallic crystals. These workers have pointed out that
different values for § are needed for different metals for suecessful description of their
lattice dynamical behaviour.

Numerical results reported here present another comparision of the ionic overlap
energies, pressures and bulk-moduli on the basis of three [2, 3, 8] different schemes. This
comparison brings out the conclusion that the most suitable values for E, P; and B are
those obtained using f = 2/r whereas the Bohm—Pines [3] and Thomas—Fermi [2] schemes
represent the limits,

The compromised model potential (8 = 2/n) assumes the local version of model
potential which amounts to spherical Fermi surfaces, for which the present calculations
are made. The values for Ej, P; and B, reported here may be employed to estimate the
corresponding quantities for the electrons, which can otherwise be given in term of self
consistent approximate formalisms [16-18].

The ionic pressure, reported here, plays a dominant role in maintaining the lattice
equilibrium, to which an adequate analysis is still needed. Further, these quantities (E,
Pyand By) may be utilised in deriving the various lattice dynamical properties of the crystals.
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