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A perturbation method for the soliton solutions of nonlinear equations tractable using
3 %3 matrix IST formalism is discussed in detail. The corresponding changes in conservation
laws are also considered.

Perturbation technique for soliton-like solution of nonlinear equations amenable
to the scheme of Zhakharov and Shabat [1] and Ablowitz et al. [2] have been discussed
in detail by Kaup [3], Keener and McLaughlin [4] and many others. In recent times there
have been exhaustive studies of the inverse scattering framework in the treatment of
Gardner et al. [5] and in the more recent review of Bullough and Dodd [6]. But many of
the equations of physical interest are not tractable by the 2 x 2 formalism indicated above,
For example, the three wave interaction in a plasma, interaction of an ion-acoustic wave
with a Langmuir soliton, etc., are all treated in a IST frame work where the matrix struc-
ture is 3 x 3. Furthermore, the self-modulation of the waves in a three wave interaction
are also very important in the stability consideration of the system. Such an analysis has
been attempted recently by Franklin et al. [7]. On the other hand, only an approximate
version of Sonic-Langmuir soliton equations are invertable. So there is a necessity for
a perturbation formalism for the 3 x 3 system. In this note we have considered such a frame
work. As a prototype we have considered the equations of three wave interaction but the
calculations are similar in any 3 x 3 system.

Consider the 3x 3 eigenvalue equation for the three wave interaction:

 (—ilax+Vyy = A7y, ®
where 4 and ¥V are given by:
o, 0 O 0 Via Vis
A=10 a, 0 and V=|V, 0 Vas
0 0 a4 Vi1 Vi O
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We have closely followed the notations in [8]. In a perturbation scheme one is essentially
interested in the variation of the parameters of the theory as the nonlinear field becomes
changed due to the effect of the perturbing term. Suppose the equations under considera-
tion are:

6a1+'9 da, oy

— — = a,a;+&fi(ay, a,, as),

Y 15 293 (ay, az, a3)

aaz_i; 5(12 X +f(

—= —= = aja.+ef(ay, a,, as),

ot 255 341 2(ay, as, a3)

6a3+9 das Iy )

— — = a,a,+¢ef5(aq, a,, as),

Y 3 % 122 +ef3(ay, az, as ]

where ¢f; are perturbing terms. _
Consider any functional F(a,, a,, d3) depending on the nonlinear fields g;. Then
the total change of F is given by:

dF <6F> . jdx [aF(x) da, | OF(x) day | OF() 6_a§:|

ar \ot da, 0t = da, 0t  0day Ot
_(oF (. [0F(x) OF(x) OF(x) -
= (at>o+8jdx[ o, fi()+ 24, fa(x)+ oa fs(x)]: €©)]

where (0F/d1), are the time variations for the exactly solvable system. The most important
quantities whose variations are essential are the eigenvalue ¢ and the transmission
reflection coefficients a;;, defined through the linear relation between the Jost solu-
tions @) and vj:

on =12 ajkw,;' 4)
For the case under consideration we assume the matrix ¥ to be anti-symmetric V; = — ¥V
and then one finds from the integral equations of the Jost functions that:
da;(x) S . R - g e .
5—V”Tz) =W l[leu:(x z)/ak¢;5jab3klu%’l’z+ i Z)/alqsllcsl}.usjablp?ﬂPZ} &)
k

Now the variation can be computed once the Jost functions are known. For this let us con-
sider the case of one soliton solution.

Such a solution corresponds to a simple zero of a;;(£) and a; 3(§) in their half planes.
Let &,(£3) to be simple zero of each a;4(as3) in the lower (upper) half-plane. Then from
equation (3.72) and (3.7b) of [3] we have:

F(x) = ifce” 2%,

F(x) = —iBasce™ %, ' (6
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where F and F are the kernel functions of the Marchenko equations (vide equation (3.6a)
and (3.6b) of [6]). These equations when solved yield K(x, y) and K‘®(x, y) which when

used in the integral equations

1 o
'l,l)(l)(f, x)e—iﬁx/ax =10 +f K(l)(x’ s)eit(s—x)ﬂuds’
0 . '
[ =
11)(3)(6: x)e-iéxlas =10 +J K(3)(x’ s)eié‘(s-x)ﬂzsds, 0
1 X
yields:
Kx, y) = e™P283f(x),  KP(x, y) = e*ifsiorg (), ®
1 M2C1‘—'M1Cll LZCI_LIC;,
f(x) = Em . MZCZ—]VIICZ » g(x) = mz——Mz-lTl * L2C2_L1C’2 )
.th M2C3—M1C,3 L2C3"‘L1C'3
with:
L= _VIYE*C*C . eiﬁu(zl“zl)x
2in (67 -&y) e
I yl.yzﬁza(_:*c eiﬂu(ﬁ_i'-zﬂx
-2 = - == " 3
Bi2(€1—&) (=&
M, = — 81_837’172C_C: . giPasEs &)
(§5—81) (&3—E5)Bas ’
M, = _”Lﬁ*c_* - gifaatEs =g,
2in3(€3—¢&3)
C1 = ')‘)1')’2—ﬁ12_C*C s eiﬁlzzx‘x,
2ny
/1 D EYIz’ZﬂZiC*C . eiﬂlzél'-"
&8 ’
C, = —if15C; Ch = +if,5C,
3 = 51.833:1?3@ . o iB2383*x
(63-%1) i
CI3 = }m . e‘iﬁzaé‘a"x. (9)
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The choice of &, &, &5 depends on the particular sets of y;, 7, y; Which in turn depend
upon the physical situation under consideration. Finally:

—if12&1x
e—igx/“‘tp(l)(f,x e - f(x
RTINS R
s/ . ifi23éax
e WHBGENE x) = — mm——————mig(X).
if,3(€3—¢) 2
c* .
e 8__51;3_6 el‘:i"‘xﬁlz
e—iéxluzw(Z)(é’ x) = 0
8283C* i&3*xfaz
CEAA
8,8,C*f(x T e,85C*g(x ) .
+ lﬁ?:‘_i é)j;(g*)—g ) . b1z +EMx iﬁ (g*ié)g((é )__é*) . giP23lEstes )x' (10)
12\51 1 1 23153 3 3

Next we consider the variation of the eigenvalue & for the corresponding change in the
nonlinear field. For that consider the eigenvalue equation for the first kind of Jost function
which is written in component form. When the nonlinear field (p = Vi, = —¥5,) has

changed to p+dp - 8(x~z)

, '3
— iox D+ pyiD +6p - S(x— )i+ Visps” = - piH

1

, 4
—ioxy— py(—8p - 6(x— )y + Vo395 = ~ ps"

2

, ¢
"lax’l)gl)— V31’P(11)+ Vsz#’(zl) = - 1/)51)‘ 11)

3

Now except for the narrow zone x = z these equations are the same as the original [1],
so that we may set

P = ap®?  for x <z,
= pp» for x>z
Integrating (11) from (z—e¢ to z-+¢) and taking the limit ¢ = 0 and using (12) we obtain:
@GPy~ p09) = op 96,

@Y~ 9098 = ~op - ¥4
/J
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Now let us recall the definition of a; (¢ + &) which is

vi ¢1 ¢
ayu(§+08) =Wt y; 47 ¢3| = a(®)s¢ (14)
v; #3 ¢3
which yields in conjunction with (13):
56 1 3.1 3.1 ~1
— = - W, i5
5p _ a® [$292—iy1] (15)

where W is the Wronskian defined in [3].

When (15) is supplemented with the expressions for Jost functions (10), one can
obtain 6¢/dp explicitly. This is similar to the case of 0&/6q and 6&/dr. Since the eigenvalue
has a variation one should also expect that the infinite number of conservation laws of the
3 x 3 system will have a variation. For this we first consider the derivation of the conserva-
tion laws. Let us consider the eigenvalue equation for

¢(1) — Feiixldx (16)
which can be written as:
Fiy = _iV12F2_iV13F3a

F2x+(if°‘1_1_if“2_1)F2 = — iV F1—iVy3F,,

Fayot(ilay ' —itaz ZFy = —iV3 F—iVy,F,. N EY))
Substituting
[ve] 0 o0
Fi=14+YA4,L7" F,=YBE™ F3=YC¢™"
1 1 1

and equating different powers of ¢ we get:

V. V.
Bl =t Ll . C1 = i’
Ba1 B31
dAn - n .
dx = =iV3B,—iV;;3C,,
dB, : . :
dx = —lﬁIZBn+1_lV21An_lV23Cm
dc,

2 = —iB13Cors = Vs dy—iV3sB,.
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Equation (18) can be solved iteratively for 4;’s. Let us quote the first two:
A, = —i J‘ [ 12V21 + I/131131:| dx
L= i, JLEER
' K B21 Bs1 -

Vi, V. V5V =
4 =_;H<i_zz+1_33_1)dx]
2 o P

-

' I ANZ Vi)V,
- J [ﬁ211ﬁ31 (V12V23V31+V21V32V13)+ ((%1)21_-: g ( (:;:1)213] v

Now since in the exact situation d;;(£) = 0 so that lim 4; are the conserved quantities
and we first two integrals of motion:

o0

VoV Vi3V
I, = I( 12721 V13 31>'dx,
B2 P31

-0

o«

i (VZI)xVIZ (V31)xV13
IZ = e V V V3 V V V 1) S d
J (521531( 12VasVartVaVaabiad+ =g o™ + = >

-0

Now in the perturbed system d,,;(£) # O and its change can be easily calculated from the
nature of the Jost functions, and so can the subsequent change in Iy, I, etc.

Our above analysis clearly indicates a step by step procedure for evaluating the changes
in a 3x3 inverse scattering framework when the original nonlinear equation has some
correction term added.

The physical situations pertaining to our above analysis occurs in several domains
of theoretical physics. To mention a few, one can consider the self interactions of the usual
three wave interaction, the exact equations of the Sonic-Langmuir solitons, and coupled
nonlinear Schrédinger equations describing a more exact theory of nonlinear self-focussing
in liquids [9].
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