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The principle of invariant embedding is used with the asymptotic method to solve the
critical slab problem. The formalism is carried out for both finite and infinite reflected slabs
with general anisotropy. Calculations are only made for an infinite reflector slab with linearly
anisotropic scattering.

1. Introduction

In a recent note by Siewert et al. [1-3], the principle of invariant embedding, as de-
veloped by Chandrasekhar [4], is used effectively to analyse the critical reactor problem.
In their method they used the elementary solution method [5] or the P-L method for
solving the one-speed neutron transport equation in the core.

In this work we use a technique blending the treatment of the Chandrasekhar function
with the construction of an asymptotic expansion solution of the core equation with
respect to a small parameter. The leading term of such an asymptotic solution gives results
for the criticality dimensions of the reflected slab. The formalism is developed for a finite
reflector which tends to infinity; calculations are made for an infinite reflector slab.

To be specific, consider a slab of multiplying media which extends from X = —a
to x = a and is characterized by the mean number of secondaries per collision ¢; > 1.
This uniform slab is surrounded by uniform finite reflectors of another material characteri-
zed by ¢, < 1 and extended to » and —b.
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For anisotropic scattering of mono-energetic neutrons in a sourceless medium, the
neutron angular flux y*(x, p) satisfies the equation
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where the distance is measured in terms of mean free paths.
We seek the value of ¢, when ¢, is given for which there exists a real non-negative
solution of Eq. (1), subject to the boundary conditions:

'lpa(x’ ,LL) = ‘Pa(—x, _ﬂ)’ (2)
yA(b+z0, B) = 0, ©)
where z, is the extrapolated distance and
v'(a, W = v*(a, B @)
2. Analysis

For the reflector ¢, < 1 we can use the Chandrasekhar results [4] for the reflected
and trasmitted distributions:
1

1 ! ! 1
v a, —p;7) = 2—;‘[5(1; Wy my¥a, Wi ndy, p>0, &)
0
and
B 1
2 2 -tin 1 ’ 2 ’ '
v, ;1) = y(a, psv)e T+ o» T(s p's Wy“(a, p'stydy’, n>0, ©)
0
where
N
’ ”I'l" 1 2 p ’ ’
Sy, m)=—— 3—\ (= Dlea fiwdes 1)piles w)— ot )T 1)] M
ptu T:_OJ
and
N
, py 2 .. . ,
T(rs iy p) = P Z e fH ot Wy 1) — vt Wl 1)1, (3)
' ' =0
with

du' P
it p) = P+ —g— Zz‘ (—1)‘*"c‘sz2£ IL J:EL” ) [yi(e; wwts 1) — ou(es Weut; 1)]

©)



723

and

N 1
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(10)
In the case of an infinite reflector, Eqgs. (5)—(10) tend to the equations for half space, which
are conformally obtained by limiting = to infinity [6] and writing lim S(z; g, p') = S(u; u'),
lim T(t; u, &) = 0, lim gy(z; @) = 0, and

N 1
APy ,
lim p(e; 1) = (W) = PG+ 5 z (-1 *erf? f 0D pmaty,  an
k=0 o ”+1L :
and
1
Vo =) = 5 [ S oW i, we.. (12

0

For region 1 a rigorous solution is reported in Ref. [5], but here the asymptotic method
- is used. This method is developed by Larsen and Keller [7] and by Boffi et al. [8]. The
latter is a direct method of calculation. However, their asymptotic series show oscillatory
behaviour plus the complexity of the inhomogeneous term of the diffusion equation obtained
which increases with higher-order corrections. In order to improve the Boffi method we
adopt the method of constrained co-ordinates [9]. By this method the coefficients of the
asymptotic expansion are chosen such that the secular terms of the inhomogeneous equa-
tions are omitted. Les us introduce the dimensionless parameter ¢ and dimensionless spatial
variable defined by

1
e=—, 0<<ex], (13)
2a
x
= 14
ot (14)

into Eq. (1) to get the scaled transport equation in the core as follows:
N
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which is to be integrated using condition (2). By substituting

0 ]
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in Eq. (15), then the resulting equation can be formally solved for Fi(x, ) to give

.1 ‘
Fofx, p) = " Z (— D' Ay, it (17)
1=0
where
_‘
A%, 1) = \ Z @n+1)f; Py(p) — = %'" = (18)
From which one can find that
do=1, @5lx) =0, @lo(x) = @3e(X) = ... = gno(x) =0
and
di =0, @5(x), on(x)#0, @3(x)=..=¢u() =0, (19)
while for m = 2, @b, (k = 0,1, ..., m) one gets
d*p, (x)
A +3d,(1 =D pa(x) = Gu(x), (20)

where G,(x) depends on dy, da, ..., dysp and @5o(X), Po1(X), .5 o r—1(x) With

Go(x) =0, Gy(x) = —3d;(1—f)@oo(). (2
The general solution of Eq. (20) is
Por(X) = Ay cos yx+Gi(x; ), (22)

witl%'i y = 3d,(1—f1) and Gj(x; p) denoting the particular (even) solution to (20).

In order to find dj, appearing in Eq. (22), we apply the continuity condition (4) to
Egs. (5) and (6) for a finite reflector and to Eq. (12) for an infinite one. The result for an
infinite reflector with dimensionless: spatial variables is

1

1 r ’ ’
Fo3, —m = ZJS(MH)F‘(%, W)y, (23)
0
or, by expansions (16),
1
1 r I
i, —i) = J S(us WIFAG , 1)dK. (24)

0

For m = k = 0, Eq. (22) together with Eq. (24) form an eigenvalue problem to determine
d,, i.e. from Egs. (22) and (24) one has )

1
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which gives 92 = #? or
2

T
dy = ;—x (26)
)
since
1
1
1— ——-JS(M; w)du' # 0. 7.
2u
0
For m = 1, the general solution (22) is
a 3d, L
@o1(x) = A cos nx— o (1—f1)x sin nx. (28)

Then using Eq. (28) in Egs. (18), (17) and (24) and multiplying the resulting equation by
u and integrating over the interval pe (0, 1), one gets

~822 B

dy = S—fi2 D’ (29)
where
11
B=1+3 g E[ WS(u'; wydudy’
and
11
D=1- g £ S s wdpdy!'. (30)

With these values of Band D, d; can be determined. The higher-order coefficient d,,, m > 4,
can also be evaluated. The values of d, and d; for B/D = 1, which is the case of the non-
-reflected slab, are the same as given by Boffi [8].

3. Numerical applications

To assess the method, a numerical application is made for the linearly anisotropic
critical case and for an approximation of order L > 0 in which

L
Fix, ) = Y &"Fi(x, 1)
m=0
and
L+2
=Y &d, (31)
m=0

We restrict ourselves to the approximation L = 1, in which
¢} = 1+e&%d,+6ds, (32)
where d, and d; are given by Egs. .(25) and (28).
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The values of ¢} are listed in Tables I, IT and III for a given ¢, as a function of the
half thickness a and different anisotropy. The values of yo(u) and v,(x) which appeared
in S(u, u') are equivalent to the tabulated Chandrasekhar function (u) and ¢(u), respec-
tively. In the case when ¢, = O, the ratio B/D = 1 and the Boffi [8] result for the slab
is obtained.

TABLE 1
Values of critical ¢; for f} =f2 =0
——— : _—
AN 5 10 20 40 100
[0 \
0.2 1.023932 1.007104 1.001916 1.000497 1.000081
0.5 1.023452 1.007044 1.0019089 1.000496 1.000081
0.9 1.020564 1.006683 1.001863 - -1.00049 1.000081
TABLE 11
Values of critical ¢, for f1 = 0 and £2 = 0.333
— - — — ) 0 N .
N 5 10 20 40 100
C2
0.2 1.028327. 1.007653 1.001985 1.000505 1.000082
0.5 1.022128 1.006878 1.001888 1.000493 1.000081
0.9 1.013148 1.005631 1.001732 1.000474 1.000081
TABLE I
Values of critical ¢, for f1 = f7 = 0.333
N i A g
N 5 10 20 40 100
€2\ . _
0.2 1.039048 1.011046 1.002922 1.000751 1.000122
0.5 1.025113 1.009305 1.002704 1.000723 1.000120
0.9 1.00268 1.0065 1.002354 1.00068 1.000117
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Editorial note. This article was proofread by the editors only, not by the authors.
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