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The concept of the electric-ficld-variant (EFV) atomic basis sets is extended for the
perturbation by the inhomogeneous electric field with a constant gradient. The functional
dependence of the Slater-type orbitals (STO’s) on the strength of the field gradient is generated
using the approach recently devised for the Gaussian-type orbitals and the appropriate
integral transform. The EFV STO’s derived in this way are utilized for the calculation of
atomic quadrupole polarizabilities. The accuracy of the EFV STO approach is discussed by
the comparison of the present results with the accurate quadrupole polarizability of the
hydrogen atom. Then the EFV STO method is applied to the calculation of quadrupole
polarizabilities of isoelectronic He- and Be-like systems. The latter calculations are performed
within the coupled Hartree-Fock scheme and their results indicate a good performance of
the method. It is of riote that using the EFV STO bases does not require any explicit extension
of the basis set for perturbation calculations.

1. Introduction

The interest in multipole polarizabilities is primarily due to their importance for the
determination of the so-called induction contribution to the interatomic and intermolecular
interaction energies [1, 2]. Of the 2"-pole polarizabilities only the dipole (L = 1) polariza-
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bility can be dircctly obtained from the experimental data [1]. The other ones, whose
knowledge is required for the calculation of higher-order multipole contributions to the
induction energy [2], can only be determined by using the theoretical methods. This, in
principle, can be accomplished by means of the perturbation theory [1]. It is worth attention
that already in the case of the electric dipole polarizabilities their accurate calculation may
represent quite a problem even for relatively small systems [3]. Computing the higher
multipole polarizabilities becomes increasingly difficult and the corresponding data are
rather scarce.

The approximate nature of quantum mechanical treatment of many electron systems
makes the formal perturbation theory equations computationally intractable. Even the
Hartree—Fock perturbation theory [4-6], which undoubtedly represents a reasonable choice
between the computational effort and the quality of the calculated polarizabilities, suffers
from several shortcomings. It is the so-called basis set problem which usually limits the
range of applicability of this theory. Shortly speaking, in order to describe properly the
system response to the external perturbation one needs far more basis functions than in
the calculations for the unperturbed system [7-9]. This makes at least the corresponding
perturbation calculations quite expensive, if possible at all.

An alternative solution to the basis set problem in perturbation calculations of atomic
and molecular polarizabilities has recently been proposed by one of the present authors [10].
In contrast to standard Hartree—-Fock perturbation calculations which involve some
specific extension of the basis set [7, 11-13] this new approach employs virtually the same
set of functions for both the unperturbed and the perturbed system. However, the set of
functions used to describe the perturbed system is explicitly dependent on the external
perturbation strength. The corresponding one-electron functions are referred to as the
field-variant orbitals.

In Part I of this series [14] the field-variant orbitals for the electric field perturbation,
i.e. the so-called electric-field-variant (EFV) orbitals have been considered with respect
to their applicability to the calculation of accurate Hartree-Fock (HF) dipole polarizabili-
ties. In addition to the EFV Gaussian—typé orbitals (GTO’s) [10, 15], whose efficiency in
the calculation of molecular dipole polarizabilities is already well established [15-17],
also the corresponding Slater-type orbital (STO) basis sets have been proposed. More
recently, the concept of the EFV GTO basis sets has been extended for the perturbation
by the inhomogeneous clectric field with a constant field gradient [18] and applied to the
calculation of atomic quadrupole polarizabilities.

In the present paper we shall consider the EFV STO bases for the external field gradient
perturbation. They will be introduced by the appropriate integral transform of the EFV
GTO functions defined in Part I of this series [18]. The EFV STO bases will be applied
to the calculation of atomic quadrupole polarizabilities and their advantages and disad-
vantages with respect to the corresponding EFV GTO functions will be discussed. The
present study is limited to the Hartree—Fock approximation and we shall not enter any
detailed discussion of the pertinent correlation effects. However, it should be pointed out
that both the EFV GTO and the EFV STO bases can also be utilized in perturbation
calculations of the correlation contribution to the multipole polarizabilities [19-21].
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2. Electric-field-variant basis sets for the calculation of quadrupole polarizabilities

2.1. The quadrupole polarizability

Before discussing the relevant EFV bases let us summarize the basic concepts and
definitions. We assume that the external perturbation is due to a constant field gradient
which is defined by five components ¥, ,,(m = —2, ..., +2) of the second-rank irreducible
tensor ¥, [22]. The components are assumed to be real. Then, the perturbation term in
the Hamiltonian of a given many-electron system will have the following form

+2
H(l) = - Z Z QZ,mVZ,m9 (1)

m=-—2 i

where Qz’m(i) is the m-th component of the i-th electron quadrupole moment operator
defined in terms of normalized tesseral harmonics [23]. In the presence of the perturba-
tion (1) the total perturbed energy E(V,) can be expanded into the power series with respect
to the components of V,, i.c.

+2 +2 +2
EWVy) =EP+ Y ENVi.+ Y Y E3) s mVamVan +higher-order terms, (2)

m=-2 m=—2 m'=-2

where the superscripts refer to the order of the perturbation expansion. On the other
hand the empirical expression for the perturbed energy is
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and thus the components of the quadrupole moment Q, ,, can be identified with the negative
of the pertinent components of the first-order perturbed energy £ (212,,, while the quadrupole
polarizability tensor is defined by

2
Oy m2m = _2E(2,r)n;2,m" (4)

The latter definition is analogous to that employed by Mulder et al. [24]. However, it differs
from the definition by Buckingham [1] who defines the quadrupole polarizability tensor
in terms of its cartesian components.

For spherically symmetric systems the whole tensor (4) is determined by a single
component, say ®; ;5.0 = %,

O(2,m;2,m’ = oLQémm' (5)
and

tg = —2E(22,());2,0 = —2E®, ©

The quantity o, is simply the atomic quadrupole polarizability defined by Dalgarno [4] and
is equal to twice of the constant C introduced by Buckingham [1].



684

2.2. Survey of the EFV GTO concept for the field gradient perturbation

The EFV GTO’s for the electric field gradient perturbation [18] have been defined
by a reference to the exact solution of the corresponding perturbed spherical harmonic
oscillator problem [22]. This approach is analogous to that utilized previously in the case
of the EFV GTO bases for the dipole polarizability calculations [10, 14]. However, in the
case of the field gradient perturbation the basis set modification is achieved through the
field gradient dependence of the orbital exponents. For this reason it was necessary to
generalize the concept of a single orbital exponent g, to the second-rank tensor a;, whose
cartesian components for the unperturbed system a; ,(0) are given by [18]

ai,uv(o) E aié‘uv' (7)

In order to define the pertinent EFV GTO’s let us assume that a given unperturbed
problem has already been solved using the initial GTO basis set { x:(rs a1 (0)), xa2(r; ay(0)), ...,
Xm(r; @,(0))}, where r is the electron position vector and the tensor exponents for the
unperturbed problem are given by Eq. (7). For the sake of simplicity we shall also consider
only a single component of the field gradient tensor, say V2,0 = V. Then, according to
Part IT of this series the resulting EFV GTO set will have the following form {y,(r; a,(V, A)),

x2(r; @x(V, D), ..., xalr; @,(V, 2))} with the field gradient dependent orbital exponent
tensors given by

AV 2
ai,xx(Va /1) . ai,yy(V9 )L) = ai [1 + 2—2‘] H (8)
AV P
ai,zz(Vﬁ ;L) = ai [1 _2 Z—Z‘\l s (9)
and
a;,,(V,2) =0 for p#w. (10)

The additional parameter A was introduced in order to account for the difference between
the corresponding solution of the perturbed harmonic oscillator problem and the modifica-
tion of orbitals in a many-electron system [18]. The numerical value of this parameter is
obtained variationally through the minimization of-the second-order energy expression
[18, 25]. The form of the EFV GTO’s displayed in this section will help to introduce the
corresponding EFV STO bases.

2.3. The EFV STO basis set for the field gradient perturbation

According to the material presented in Section 2.2 the exponential part of each primi-
tive GTO, i.e. exp (—a;?), in the presence of the quadrupole perturbation term (1) with
Vam = Vo will undergo the following distortion

S 2 2 2
CXp (—_airz) meXP (_ai,xxx _ai,yyy — ;2 )’ (11)

where the modified exponents are given by Egs. (8) and (9) and determine the explicit
dependence of each EFV GTO on the strength of ‘the external perturbation. This is the
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most important result, for it allows for a straightforward introduction of the relevant

EFV STO functions.
It is known that the exponential part of each STO, i.e. exp (—f;r), can be expressed

in terms of the following integral transform [26]

0

2ﬁ7 J 5™ exp (—B¥ds) exp (—sr?)ds. (12)
s

0

exp (—fir) =

Once the field gradient dependence of the exponential Gaussian term in the integrand
of (12) is known one can generate the analytic perturbation dependence of the STO’s by
a simple substitution of the appropriate counterpart of Eq. (11). This procedure defines
the EFV set corresponding to a given initial set of STO’s. By virtue of Egs. (8) and (9)
the EFV STO’s will explicitly depend on the perturbation strength V. They will also depend
on the additional parameter A which is to be determined during the second-order energy

calculations.

If we denote by xi(r; B0)) = 2;(0) the initial STO’s for employed for the unperturbed
system, then the EFV STO functions for the perturbed problem can be written as
1:i(r; B A, V) = x4, V). The explicit dependence on V follows from the integral transfor-
mation (12) and Eq. (11). The appropriate substitutions lead to the following power series
expansion of x4, V)

1 1
x4, V) = x(0) {1 +3 Q2,01+ i) 5 AV +[E Q5 o1+ +Br)+(1+ )] I
+1(Q,0+ ) [5+6(1+ i) +3(L+ i) +(1+ )] /%] 22y } , (13)
where
0,0 = $(32°=17). 14)

Even if the initial STO is normalized this is not the case of y;(4, V). Thus, although the
expansion (13) is the same for any STO the resulting EFV STO’s will have, in general,
distinct normalization constants.

Some general features of the EFV STO’s for the quadrupole perturbations are of
particular interest. First of all, the EFV STO’s exhibit a strong dependence on the orbital
exponents. It follows from Eq. (13) that the smaller is the orbital exponent the larger will
be the field gradient induced distortion of a given initial STO. This is precisely the feature
we need to have a reasonable description of the system response to the external perturba-
tion. For the electric field perturbations this is the outermost part-of a given system which
is expected to be primarily modified. This part in turn is usually described by orbitals with
relatively small exponents. Secondly let us notice that both A and V enter expansion (13)
always as a product AV. This is the feature which allows one to show that the n-th order
energy can be treated as the n-th order polynom in A [14, 25, 27]. Finally, let us point out
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that for a given initial STO set the corresponding EFV STO set has the same dimension
and its dependence on ¥ is assumed to take care of all the perturbation effects. The expan-
sion (13) shows that using the EFV STQ’s is to some extent equivalent to the initial basis
set augmentation with the higher STO’s. These are implicitly generated within the present
method.

3. Calculation of atomic quadrupole polarizabilities using EFV STO’s

3.1. Hartree-Fock perturbation theory for non-orthogonal perturbation-
-dependent bases

The calculations reported in this paper have been carried out using the coupled
Hartree-Fock (CHF) perturbation theory. However, due to both the non-orthogonality
and the perturbation dependence of the EFV STO basis set, the standard CHF method
[4-6, 28] which assumes that the basis functions are orthonormal and independent of the
external perturbation must be replaced by its appropriate modified version [27]. A tre-
mendous simplification of the general perturbation equations [27} follows from some
specific symmetry properties of systems considered in this paper. These are the atomic
He- and Be-like systems whose unperturbed orbitals are expressible solely in terms of the
s-type STO’s. In this particular case the second-order energy formula [27] can be simplified to

E(Z) =2Tr [f(z)—h(O)R(O)S(Z)—I-% G(R(O), g(z))]R(O), (15)

where R(® is the zeroth-order density matrix in the unperturbed STO set and £ is the
corresponding matrix of the unperturbed HF Hamiltonian. Similarly £ and $® collect
the second-order terms of the f and the overlap matrix S, respectively. The f matrix
involves the elements of the one-electron bare nuclei plus perturbation Hamiltonian.
g'? is the supermatrix of the second-order two-electron integrals and G is the matrix
of two-electron terms of the HF operator. More detailed expressions for these matrices
can be found in Refs. [14, 25, 27].

Due to the symmetry of both the unperturbed systems considered in this paper and
the perturbation operator (1) the first-order perturbed density matrix R‘* does identically
vanish, Furthermore, since the parameter / enters all matrix elements as a product with ¥,
the second-order energy is the parabolic function of 4 [14, 27]. Thus, E® = E®(J) can be
minimized with respect to 4 and the resulting minimum will correspond to the best variatio-
nal result within the EFV STO approximation [25].

The calculations reported in the subsequent sections of this paper have been carried
out using a fully analytic computational scheme, i.e. all the perturbed matrices have been
calculated analytically using the appropriate expansions and performing a direct analytic
integration.

3.2. Quadrupole polarizability of the hydrogen atom

There are two interesting aspects of the EFV STO calculation for the hydrogen atom.
First of all the 1s STO with f; = 1 is the exact solution for the unperturbed problem.
Secondly, the exact value of the quadrupole polarizability of H is known and amounts
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to 15.0 a.u. [4]. Thus, the second-order energy calculated using the EFV STO approach
will not depend on the accuracy of the unperturbed solution and can also be checked
against the corresponding exact value. The present method leads to

ap(A) = —2EP(4) = 40.51—27.3750)> (16)

and the second-order energy minimization results in the optimal value of A, 1 = 0.739726.
This corresponds to dQ(/Al) = 14.979452 a.u. which is almost the exact value and shows
that the EFV STO approach may give the quadrupole polarizabilities of high accuracy.

Another test of the reliability of the EFV STO method is supplied by a direct com-
parison of the accurate and approximate first-order perturbed wave function ¥V, How-

{1)
Qr( r)
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]
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Fig. 1. Radial first-order density function (ggl)) for the hydrogen atom: — — — corresponds to the exact

result and represents the A-optimized EFV STO function. Both 951) and the electron-nucleus distance
r are given in atomic units

ever, since the second-order energy involves both the unperturbed (¥(%) and the perturbed
function through the element (@ |H®| ¥y jt appears to be more instructive to compare
the pertinent first-order spinless one-electron densities [29]. Within the one-electron ap-
proximation these quantities are defined by

¢V ) = X mwOw (s D+ 9w 4), (17)
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where >’ and u{" are the unperturbed and first-order perturbed orbitals, respectively,
and n; is the orbital occupation number. For the exact solutions p{"(r, 1) becomes the
pertinent exact first-order perturbed function and is obviously independent of A. In the
case of atomic systems and real orbitals it is enough to compare only the radial first-order
densities. For the hydrogen atom such a comparison is presented in Fig. 1. As could have
been expected from the «, result the difference between the exact and approximate (for 7)
first-order radial density is small. It becomes almost negligible for larger distances from
the nucleus. This region is, on the other hand, of primary importance for the calcula-
tion of ayg.

The results obtained for the hydrogen atom undoubtedly indicate that the EFV STO
method is the right approach to the calculation of atomic quadrupole polarizabilities.
However, for systems with more than one electron the o, value will also be influenced by
the inaccuracy of the approximate unperturbed HF orbitals and this problem requires
a rather detailed analysis.

3.3. EFV STO CHF calculations of the quadrupole polarizability for 2- and
4-electron atomic systems

Our previous EFV GTO calculations for H, He and Be [18] have shown that the
convergence of «, for the GTO bases is quite slow. Since the number of STO’s required
in accurate atomic calculations is much smaller than the number of GTO’s and since
the STO bases provide usually a better description of the outer atomic regions the EFV STO
approach could be even superior to that of Part II of this series [18]. Let us first focus our
attention on the o, calculations for He and Be which can be directly compared with our
previous EFV GTO results [18].

A variety of distinct STO bases of different accuracy has been employed in the calcula-
tions for He and Be. Their quality can be to some extent estimated from the unperturbed
energy values E'%. These as well as the calculated second-order energies and the optimized
values of A are listed for both atoms in Table I. Among the initial STO bases utilized for
He the best appears to be the optimized 5 STO set of Clementi [30]. For the beryllium
atom there are two STO bases of presumably very high accuracy. One of them is the 5 STO
set of Clementi which comprises two 1s and three 2s carefully optimized Slater-type func-
tions. The other is the 12 STO set of Roothaan et al. [31] which involves higher, up to 4s,
STO’s, though less selectively optimized. From the point of view of E© these two bases
are practically equivalent. However, the resulting optimized E® values differ by almost
2 a.u.; a comparison with the reference CHF data which is carried out in Table II appears
to indicate that the 12 EFV STO value is presumably the most reliable one.

Just as for the hydrogen atom the calculated radial parts of the first-order density
functions for He and Be for some selected bases are shown in Fig. 2. Let us add that for
He the 2 EFV STO function of Clementi [30] gives practically the same plot as the 2 EFV
STO function following from the tables by Bagus et al. [32]. Almost the same quality of
the density function is observed for the 4 STO and 5 STO sets of Bagus et al. [32] and the
5 STO set of Clementi [30]. All they give the density plots nearly coinciding with that for
the 6 STO set of Clementi [30]and for this reason have not been explicitly shown in Fig. 2.
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TABLE II

A comparison of the EFV STO and other CHF results for the quadrupole polarizability of two- and four-
-electron atomic systems. All entries in AS

Reference CHF results

l EFV STO CHF

om or ion .. ab S —— N
. (e Ref. [33] Ref. [34] ‘ o e
n ! I
He 0.0965 00965 0.0967 ’ 0.0964 [18]°,
| 00979 35},
| 0.0965 [36]
Lit 0.4639 - 10-2 0.4653 - 10-2 0.4699 - 10-2
Be?+ 0.6221 - 10-3 0.6347 - 10-3 0.6424 - 10-3
B+ 0.1403 - 10-3 0.1422 - 10-3 0.1435 - 10-3
cH+ 0426610 | 0429910 | 0433010~
N5+ 0.1577 - 104 0.1587 - 104+ 0.1596 - 10—+
05+ 0.6722 - 10-5 | 0.6754 - 10-5
BT+ 0.3154 - 10-5 0.3198 - 10-5
Net+ 0.1660 - 10-5 0.1645 - 10-5 |
Be 14.09 , 14.4 142 [37),
| 5 14.15 [18]°
B+ L1114 1.256 !
c+ 0.2071 02262 |
N+ 0.5673 - 10~ 0.6135 - 10-1
0+ 0.1971 - 10-1 0.2127 - 10-1
Fs+ 0.8057 - 10-2 0.8693 - 10-2
Nes+ 03710 -10> |

|

? Optimized EFV STO CHF results obtained with 5 STO set for He, 4 STO sets for all two-electron
ions, 12 STO set for Be, and 5 STO sets for all four-electron ions. All the STO basis sets taken from Cle-
menti’s tables [30] except for the 12 STO set for Be [31].

b1 aw of quadrupole polarizability = 0.041496 - 10-4° cm® = 0.041496 A5 = 0.46170 - 10-6*
C?m*J-'. Conversion factors calculated from the values of fundamental constants taken from Ref. [38].

¢ The EFV GTO CHF results of Part II [18].

It is rather surprising that the 1 STO set for He gives a very poor result for E®, while the
2 STO (minimal) set for Be turns out to be quite reliable.

The final values of the calculated quadrupole polarizabilities for He and Be as well
as our results for the corresponding isoelectronic jons are listed in Table II. They are
compared with other CHF results obtained by using fixed and appropriately larger bases.
For two-electron systems our EFV STO results computed using the 5 STO set for He and
the 4 STO sets for ions [30] are practically as good as the recent highly accurate data
reported by Stewart et al. [33]. Of note is, however, that for charged systems our results
are more or less systematically lower than those of Stewart et al. [33] and Langhoﬁ' et al.
[34], the latter being higher than the former ones.

With regard to the four-electron series, the present value for Be is rather close to the
reference CHF results. However, once again for charged systems our data are systematically
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smaller than those by Langhoff et al. [34]. The present EFV STO results are also compared
with the He and Be polarizabilities calculated previously within the EFV GTO CHF
approach [18].

4. Discussion and conclusions

The final results of the EFV STOC CHF calculations reported in Table 11 indicate,
first of all, that the present approach can provide quite accurate values of quadrupole
polarizabilities of atomic systems. However, in order to achieve sufficiently high accuracy
of the computed polarizabilities one has to use quite large initial STO bases. As indicated
by our comparisons for cations, the accuracy of the EFV STO polarizabilities appears to
be highly sensitive to the initial basis set quality. It is worth attention that the appropriate
EFV STO bases generated for the dipole polarizability calculations have been found far
more promising [14].

According to the data of Table 11, the EFV STO bases seem to be, surprisingly enough,
less efficient than the EFV GTO bases utilized in Part IT [18]. It is important to notice that
the basis set size dependence of the EFV STO results is not as uniform as that observed
for the EFV GTO bases. This can be, however, due to incomplete optimization of the STO
exponents, or at least due to slightly non-systematic build up of larger bases from the
smaller ones.

Nonetheless, one has to conclude that the EFV STO CHF scheme requires quite
accurate initial STO bases. This conclusion makes questionable any extension of this
approach to molecules and one shouid hope that the performance of the EFV GTO CHF
method will be in this case good enough. However, as far as the atomic systems are con-
cerned the EFV STO CHF method is expected to be quite valuable, specifically for the cal-
culation of quadrupole polarizabilities of different electronic states of open-shell systems.
The appropriate CHF scheme is currently under consideration and the corresponding cal-
culations will be reported in near future.

One of us (K.W.) wishes to thank Professor W. Rudzinski for his continuous interest
and encouragement.
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