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The two-magnon relaxation time for uniform magnons, scatiered on a magnetic inho-
mogeneity generated by dislocation, is calculated. The main magnetic inhomogeneity is
given by the stress field of dislocation and magnetostrictive effects. In the scattering amplitude
of magnons the ground state of the dislocated ferromagnet is taken into account. The correc-
tions due to the inhomogeneous magnetization are very important in cases corresponding
to measurements performed at low internal field. The numerical results for the single disloca-
tion model are of the same order as the experimental literature data.

1. Introduction

Effects of inhomogeneous magnetization in the vicinity of a dislocation line have
been neglected in numerical calculations of the broadening of the ferromagnetic resonance
(FMR) line and the results obtained were many times less than the experimehtal data.
In a number of papers [2-5], the experimental measurements [6-7] were accounted for
quantitatively by dislocation structures. In the present paper, the scattering amplitude of
magnons is found to change strongly when taking into account the change of the ground
state of the dislocated ferromagnet. The calculated linewidth is of the same order as the
broadening measured [6, 7].

In the appendix of paper [1], the theory for an arbitrary magnetic field is presented.
In our paper, the simpler case is discussed. We neglect the ellipticity of spin precession in the
scattering amplitude.

In the present paper, the relaxation time is calculated for a single dislocation. The
stress field of the dislocation has a finite range and extends over the distance r; from the
dislocation line. For low density of dislocations the radius r, is given by the magnetostrictive
effect. In stage IT of the work-hardening curve, the radius r, is taken as half the distance
between neighbouring dislocations. We assume that two neighbouring dislocations have
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opposite Burgers vectors and are situated in neighbouring glide planes. In a dipole con-
figuration, the radius »; can be taken as

r=x/\2, )

where x is the distance between the glide planes.

2. Holstein-Primakoff transformation in dislocated ferromagnet

In order to express the inagnetization in terms of spin wave creation and annihilation
operators, coordinate systems: x;x,x; and XYZ are introduced. They are chosen so that
the x,-axis is parallel to the internal field (the applied magnetic field and the demagnetizing
field), and the Z-axis in the local quantization direction of the local magnetic moment
density M(r) at the point r. Introducing the direction cosines (r) of the quantization
direction at the point r, the situation of the systemn XYZ with respect to x,x,x; may be
defined with accuracy to an angle of rotation about the Z-axis. We fix the angle about the
Z-axis so that the transformation matrix has the simplest form. The transformation matrix
calculated with accuracy to square powers of the direction cosines #,(r) and §,(r) is given by

M), [t 0 7:(M\ [Mx(r
My |=| 0 1 || My ]. 2)
M)\ =5 =P 1 M 4(r)

In the present paper, the value of the applied magnetic field is chosen so that the
conditions '
Pl <1, [0l <1, Fa() > 1 (3
shall be fulfilled.
Quantization of the system is achieved by putting [9]:

Mi(r) +iMy(r) = QyhM ) 2a¥ ) + ...,
M(¥) = Mo—yha™(ra™(r), 4

where 7 is the gyromagnetic ration, M, -— the saturation magnetization, and a*(r) and
a=(r) are creation and annihilation operators which obey the boson commutation rules.
Spin waves in the system are introduced by the Fourier transform

ag =V 2| dra”(r)exp (—ik - r) 5

of the operator a—(¥) (consult [8, 9] for details), where ¥ is the volume per one dislocation.
On insertion of (3) and (4) into (2), the local magnetization can be expressed as

mi(") = M (r)+iM,(r) = Z exp (ik - r) {(zthO/V)llzaik"‘Mo[%(k)iin(k)]}+ XD
(6)
my(r) = Ms(r)—M, = ka,GXP (ik - ¥) { —(yhMo/2V) [ [y,(K)

+iya(k)]ag i+ [:3(K) ~iy2(K)Jar_ ]~ R V)ag —waw } + ., (N
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where y,(k) and .y,(k) are the Fourier transforms of the direction-cosines.
vik) = (1/V)  drir) exp (= ik - r). - ®

Eqgs (6) and (7) represent the Holstein—Primakoff transformation for the dislocated ferro-

magnet.
Detailed discussions of the direction cosines have been given previously in many
papers (e.g. [10]). In the case of isotropic ferromagnets the Fourier transforms y,(k) and

y,(k) can be written as

3}.0} (k) ‘ 1274 klki
7i(k) = : l;

: kk;

o - s —5— 03k + —5-0,3(k) |- 9
MO(H+O(k2) (C()k/’}’)z kz 13( kz 23( )] ( )
Herein, w; has the form of the spin wave frequency

oy = p{[H+ak*] [H+ak® +4nMq(1— k5[], (10)

4 is the magnetostrictive constant, « — the spin-wave dispersion coefficient, H — the
internal field, and o;;(k) are the Fourier transforms of the stress components. In the special
case of the single dislocation these transforms in a coordinate system xyz are given by

(see [2])

ibG sin kL2 1—Jy(rk,)
o) = — L

fike, Lj=2x, 2 (11)

(4

In the case of the edge dislocation
fex@) = (1=v)7'(3 sin g, —sin 3gy),
Sl = (1=) (sin g +sin 3gy),
fe{p) = (1=v)" "4 sin g,
Solw) = (1=v)"(cos 3, —cos gy),
) Sl @) = fo@) = O, (12)
and for the screw dislocation

Fel @ = (@) = fo @) = fo @) = 0,

Jal@) = 2sin g,

Jy(®) = —2cos g,. N (13)

Above, we use the notation: v — Poisson’s constant, L — the length of the dislocation,
b — the length of the Burgers vector, G — shear modulus, and k., k,, ¢, — the cylindrical
coordinates of the vector k: k, = k, cos ¢, k, = k,sin ¢,. The coordinate system xyz is
chosen so that the z-axis is parallel to the dislocation line and the x-axis is taken parallel
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to the Burgers vector in the case of the edge dislocation. The transformation from xyz
to x;x,X; is given by

r; = ._Z Biry, i=1,2,3, (14)
where T
Bix=cosp, = By, = —sing, Py, =0,
Bax = cos §sin g, B,, =cosdcosep, f, = —sind,
fax =sindsin @, f;, =sinYcosgp, f;, =cosd. (15)

The angles 9 and ¢ are defined in Fig. 1.

Fig. 1. Conversion of the coordinate system x;x,x5 into xyz. The system xyx,x3 can be brought into xyz
by rotating about the x;-axis through an angle # and than about the z-axis through an angle ¢

3. Scattering amplitude of spin waves

The energy of the system under consideration comprises Zeeman, dipolar, exchange
and magnetoelastic contributions. The Zeeman energy (including the contribution due to
the demagnetizing field) is given by

H,= — [drM - H. (16)

The exchange energy is

o OM\?  [OM\? [oM\?
Hy = — | dril—) +{—])+[—] ¢- an
2M, x4 0x, 0%

The dipolar energy of inhomogeneous magnetization can be expressed as

‘%dip = ’—%j drm * hdip’ (18)
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where

wor B My 19
hdip = —47'5 e k2 s ( )

k#0
and m, is the Fourier coefficient of the magnetization m(r) = Y my exp (ik - r). The magne-
k

toelastic coupling energy in isotropic materials has the form

5 MM;
H, = —5 4 Z J‘dr Waij(r)’ 20y
i,j=1,2,3
where Ei,-(r) are the components of the stress tensor.
We express the total energy of the ferromagnetic medium in terms of magnon opera-
tors. In the lowest order approximation, corresponding to the theory of non-interacting
magnons, we have

# =Y hanalag + Y {Wiwas ag + Viwayg ag +c.c.}. (21)
> kR

The terms in the dipolar energy due to ellipticity of spin precession were transformed
away by a canonical Bogolyubov transformation [1, 9]. The latter does not change essen-
tially the amplitudes of the non-diagonal terms in Eq. (21) describing the effect of disloca-
tions on magnons; therefore, at this point, the transformation is neglected.

In the present paper we intend to calculate the relaxation time of uniform magnons
scattered into the degenerate spectrum of k # 0. In (21), the terms

H; =Y Wyonag +C.C. (22)
k

are responsible for these transitions, where Wy, is given by
Wio = yh{(=34/2M,) [, 1{(B)+032(k)—2035(k) ]

— 6nM o(ks/k%) (k1 (k) + kyy (i) —2miMo(ks/k?) [kay: (k) — k2 (K)]} (23)

4. Magnon relaxation by two-magnon processes

The relaxation time of uniform magnons due to two-magnon scattering processes
is given by the formula (see e.g. [9])

i 27 )
el ary z IWk,Olzé(hwk—th), (24)
k

T

The frequency w, of the uniform mode is equal to the microwave frequency w.
In order to calculate the relaxation time from (23) and (24) it is convenient to replace
summation over k by integration with respect to polar coordinates k,, ¢, k.. The integra-
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tions over k. and ¢, are simplified by the approximation {sin (k,L/2)/k,}* ~ (=L[2)5(k,y

(cf. 1) and the factor é(hw,—hw,). We obtain the following expression for the lifetime:
t/t = (3/8m)*(bgA)*yNS/Mg, (25)

where N is the dislocation density (N = L/V),

Kmax

f kodk, (1 - ;Io("lkg))z

S=a 4

J NRO-2T[@ -]\ ke

X {F(p(ko) = p, k) +F(n—p(k) =9, k)},  for 2> 0y(nf2) (26)

and § = 0 for Q < Qy(n/2).

The integration over k, in Eq. (26) will be performed in the next Section for a special
case. Above, we use the notation: @ — normalized frequency (Q = w/d4nyM,) and Qi (gp,) —
normalized frequency of the spin wave in the case k, = 0

(@) = V[Qy+Dk2] [Qn+Dk2+1—sin® 9 sin® ¢, , 27

where D = of4nM, is the normalized exchange constant, and Qy — normalized internal
field (Qy = H/4nM,). The limits of integration are:

kmax = {[(Qu+0.5 cos® 9)* + Q% — Q{(n/2)]"* — Q2 — 0.5 cos® 9112, (28)
{o for Q< Qy(0),
Ko {[(Qu+1/2)* + 0 — Q¥(mj2)]"* — Oy — 1/2}D“}1/2 for Q> Qy0). (29)

The functions y(k,) and F(q,, k,) are given by

(k) | o-o° (30)
= arcsin — ===
e (Qp + DI sin® 9
F(gw k) = {A; (@) + Az2(0) —245,3(9) +3 sin 9 sin 2@, + @) (@4 k)
+43 sin 29 sin’ (Pt O 2 (91 kg)}z + {——sin 3 sin 2( @+ @) (@ k)
+sin 29 sin® (g, + @)1 (g4, k)Y, (31

where

Aij((pk) = Z ﬁinﬁjmfnm((pk)’ (32)

nm=Xx,y,z
A13(®) _ ,
Filpw k) = QH_lj—_DkTZ — Q7 ?[A;3(gi) cos” (g + @)
+0.54,3(g;) cos 9 sin® (g, + )], (33)

Iy k) = A23(¢k)/(Q}I+Dk§)“‘Q_Z[O-SAls(‘Pk) cos 9 sin® (@, + @)
+A,3(@y) cos? 9 sin? (@ + ). (34)
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5. Numerical results

The results are obtained for material constants corresponding to nickel (M, = 485 G,
D =569%x10"3cm?, v =032, A=l = —55x10"° G =7.4x10" dyn/cm?,
b = 2.49 x 10~® cm), the normalized microwave frequency Q = 0.459 and the normalized
internal field Q4 = 0.1787. Measurements for these values of the frequency and internal
field have been reported in paper [6].

The integration over k, in Eq.(26) can be performed in the case of large radius
(r1kmax > 6). In order to integrate Eq. (26) the function [1 — J,(r,k,)?/k7 is replaced by
0.7 r16(k,—3.3/r1). The point 3.3/r, is chosen so that the line k, = 3.3/r; divides the area
below the curve [1-—J0(r1ke)]2/k§ in two equal parts. This approximate integration is
reasonable for disk sample which is magnetized parallel to the surface. In this case, the
resonance equation is given by

Q% = Qu(Qy+1). (35)

On insertion of this resonance equation into Eq. (26) and approximating the factor
_[l—Jo(rle)]”k;2 by 0.7 r6(k,—3.3/r,) the function S can be expressed as

S _ 0IQ{F(y(3.3/r)— @, 3.3/r)+F(n—y(3.3/r)— ¢, 3.3/r,)}

B N 1 T02_ 02 : (36)
ry VD[1+2Q4+D(3.3/r)*] [Q* = Q2 3,,.(z/2)]
In this calculation, the pole of the factor {Q>—QZ(n/2)}-'/2 at k, = kmax 18 neglected.
110"8§[cm"]
;

34
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Fig. 2. Behaviour of the function S vs ;. All other parameters are described in the text
Fig. 2 shows the graph of the function S versus r; for edge and screw dislocations.

Solid and broken lines correspond to the case when the inhomogeneous magnetization
is or, respectively, is not taken into account. The angle between the internal magnetic
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field direction and the screw dislocation line is equal to 45°. In the case of the edge disloca-
tion the field direction is parallel to the glide plane and perpendicular to the dislocation line
@ = ¢ = 90°. A '

Fig. 3 presents the numerical results for FMR broadening

AH = 1yt /3) = TR (3 GAb)*M *NS (37)
baH[Oe]
150
|
100':

~serew dislocation.

—=dge dislocation

Fig. 3. Ferromagnetic resonance linewidth 4H vs dislocation density, other parameters as in Fig. 2

versus dislocation density at the same orientation of the dislocations as in Fig. 2. The
radius r; is given by Eq. (1). The dislocation density N and the distance x between the glide
planes are calculated by (see [10, 11])

N = [(6—0,)/0.3Gb)?, (38)
x = 0.00130,/(c —05), (39)

with ¢ — shear stress, o, — critical stress (g, = 2.5 x 107 dynefcm?), 8, — the work-
-hardening coefficient (0, = 2.26 x 107 dyne/cm?), ¢, — a parameter of the order of
shear stress in the lower limit of stage II (6, = 4.3 x 10° dyne/cm?). The calculated broaden-
ing in Fig. 3 is less than the measured value [6, 7] but of the same order.

The author wishes to thank Professor J. Morkowski for his discussion and for reading
the manuscript.
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