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We present results from investigations of a distorted one-dimensional electron system
with “bond impurities”. We determined the positions of impurity levels for a single impurity
and we calculated the electron density of states in the single bond CPA, for random perturbed
hopping integrals.

1. Introduction

KCP and NMP-TCNQ are quasi-one-dimensional crystals, their flat molecules are
arranged in chains [1, 2]. Some ions in KCP molecules (e.g. Br) are arranged in a random
way [2]. In the NMP molecule the methyl group has two equivalent positions and in the
NMP chain these positions are randomly occupied [3]. These materials have a similar
temperature dependence of an electrical conductivity [4] with the characteristic smeared
out phase transition.

The electrical conductivity of doped semiconductor materials considerably differs
from that of pure crystals, even in the low impurity concentration limit. At a low tempera-
ture below a critical temperature quasi-one-dimensional crystals have similar properties
to semiconductors [1] and we may expect impurity levels to lie somewhere between the
conduction and valence bands.

In this paper we report on a distorted one-dimensional electron system. The single
impurity model is a realistic description of crystals with a low impurity concentration,
and moreover, it gives qualitative information for higher concentrations. In Section 2
straightforward calculations for a single “site” and a single “bond impurity”” are presented.
Next, in Section 3, the model with an arbitrary “bond impurity” concentration is investi-
gated. We focus our interest on the energy gap region. We present the electron density of
states calculations, in the single bond coherent potential approximation (sbCPA) {5].

* This work was supported by the Polish Academy of Sciences within the MR-1.9 project.
** Address: Instytut Fizyki Molekularnej PAN, Smoluchowskiego 17/19, 60-179 Poznafi, Poland.
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2. One “impurity” in the distorted chain

Here we consider a distorted linear atomic system with a half-filled electronic band.
In this case we have two types of bonds: one between a pair of ions situated closer to each
other (the C-bond) and the second one between a pair of ions situated farther away from
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Fig. 1. Distorted atomic chain with one electron per atom. The electron hopping integrals between neigh-
bour sites are noted

each other (the F-bond). This system is shown in Fig. 1, where electron hopping integrals
between neighbour sites are noted. The Hamiltonian of this system has the form [2, 6]:

Hy = — iZ(t—!—(—l)ié)a:raiH, ®»
where tc = t+4|0|, ty = t—|0|.
The Hamiltonian of the system with a single “impurity” can be written as:
H, = Hy+Vala,, 2
or
H, = Hy+V(ala,+alay). 3)

H, and H, describe the distorted system, in which one site has a different atomic potential
(the “‘site impurity”), or one pair of neighbour atoms has a different electron hopping
integral (the “bond impurity’), respectively. Electron Green’s functions are defined by:

~ i
B = o )
n .- i I é(E) _
8= H T i, &L
and
GoB) = 8(E) ®)

E—H, 1-gE¥,’

where 171 = H,—H, and V, = H,— H,. Poles of the Green functions GAL(E) and GZ(E)
different than poles of g(E) are obtained from equations:

det (1= g(E)Vy) = (1= Vgoo(E)) = 0, Q)
det (- i(B)y) = [ VB0 ®  —VealB) (®)

—Vgio(E) 1-Vgy(E)|
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The Green functions goo(E), go1(E), g10(E) and g,,(E) have the form:

E
20o(E) = g11(E) =2 E ?_—Ez > )
[kl<=/2a
5 —tcos ka—idsinka _,,
gOl(E) = glO(E) =2 - 2 2 e s (10)
E°—E;

[k|<n/2a

where E; = {t? cos? ka+§? sin? ka}'2, a is the lattice constant.
We look for impurity levels in the energy gap. For E? < 4%, we may write:

—E

goo(E) = [(tz_Ez) (5_2 _ﬁ]uz > (1)
By= 14— R 12
feuds t+5[ [(z'Z—_EZ‘)'(étEZ)]f’Z] .
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Fig. 2. The position of the “site impurity” level (J6] = 0.1¢)

The roots of Eqs. (7)-(8) may be obtained easily. In Fig. 2 and Fig. 3 the functions:
N € G 29X it 21

- = 13
Zoo(E) —E (13)
and
V= 5 e (t+6) [(P—E*) (6" —E»]'* y
" goo(E)Elgoi(B)l | —E(t+3)%I[(f*—E?) (6> — )] +ot+EY’ (14)

are plotted, where E is the root of Eq. (7) or Eq. (8), respectively.
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For a single “site impurity” and for any atomic potential ¥ # 0, the electron state
exists in the energy gap (Fig. 2). More interesting is the case of a single “bond impurity”
(Fig. 3). The V dependence of the position of the impurity state in the energy gap is different
for a variation of the hopping integral between the F-atoms (i.e., the pair of atoms situated
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Fig. 3. The position of the “F-bond impurity” level {curve a) and of the “C-bond impurity” levels (curve b) —
0] = 0.1¢

farther away from each other) — the curve g, than between the C-atoms (i.e., the pair of
atoms situated closer to each other) — the curve b (Fig. 3). For the strong “bond impurity”
potential |V| > ¥V, = t+6 and for 6 > 0, i.e. for the “C-bond impurity”, there are no
electron states in the energy gap. For § < 0, i.e., for the “F-bond impurity” and for
(V] > Vo = t+6 two electron states exist in the gap.

3. Electron density of states in the single bond coherent approximation (sb CPA)

Now we investigate the distorted one-dimensional electron system with random
perturbations of the electron hopping integrals. This system is described by the Hamil-
tonian:

= - Z(t+(—1)i5)afai+1+VZ(:iafai+1. (15)

The symbol ¢; = 1 if the hopping integral from i-th site to i+ 1-th site is disturbed and
¢; = 0 otherwise. '

We calculate the electron density of states in the single bond CPA proposed by Niizeki
[5]. For this model we have two types of bond, the F-bonds (for even i) and the C-bonds
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(for odd 7). Coherent potentials /4, +(E)and 4, +(E) (¢ — even, o — odd) are calculated from
equations:

o f(hex(o) - he(o) i_gE_)) +y _;-l: (hZ(o) al he(o)i(E)) - 07 (16)
1 _(he(o) _‘he(o)i(_E))Fe(o)i(E) 1 _(he(o) - he(o)i(E))Fe(o)i(E)
where
hY = —t=86+V, hl= —t+5+V,
W= —t-68, hl= —t+é. an

(x is the concentration of the “bond impurities”. x+y = 1). The Green functions F,+(E)
and F,.(E) are in the form (see [5]):

E— A(E)+h(E) cos® ka-+o(E) sin® ka

F.. (E)=4 "
+(E) - (E— A(E))> — h*(E) cos® ka—o>(E) sin” ka
o<k<n/2a
) E—A(E)+ h(E) cos® ka —o(E) sin® ka
Fo.(E) = 4 e e (18)
(E—A(E))* —h*(E) cos” ka—o~(E) sin” ka
O<g<k<n/2a
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Fig. 4. Real parts of the coherent potentials 4, ¢ and 4 for § = 0.1 and ¥ = 0.01
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where
W(E) = 7 [he+(E)+ho(E)+he (E)+he (E)],
o(E) = [ (he+(E)+he(E))—(ho 1 (E) + ho_(E))],
) A(E) = 7 [(her(E)+ho i (E)) = (he—(E)+ ho—(E))], 19
denote the hopping integral, the gap and the atomic potential for the Hamiltonian of the
effective medium.
For NMP-TCNQ the methyl group has two equivalent positions. Thus, the probability
x =y = 1/2. From Eq. (16) we obtain
—+
hey(E) = —(((=)0)+5 V=[1— {1+ V?F:(B)}' *1/(2F oy (E)).  (20)

We solved numerically the selfconsistent equation (20) by an iteration method. We carefully
integrated the integrals (18) (the integrands are complex functions of the complex variable
E = E’+iE" and for a small value of E” they are of the Gaussian type with a sharp peak).
For V # 0 the variation of E' from E"” = 10~* to E” = 10~° induced the variation of
results which were less than 0.1%.
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Fig. 5. Imaginary parts of the coherent potentials 4, ¢ and 4 for d = 0.1 and ¥V = 0.01
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Fig. 6. Difference in the electron density of states for the disordered and the ordered system,
A9 = 0gisorder — Qorder for 8 = 0.1 and V' = 0.01
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Fig. 7. The electron density of states in the energy gap for 6 = 0.1 and for ¥ = 0.05 and ¥ = 0.2. The
single “bond impurity” levels are also noted

Figs. 4 and 5 exhibit the real and the imaginary parts of the coherent potentials for
the case of a weak random potential, ¥ = 0.01. All quantities are in units of the hopping
integral (¢t = 1). Fig. 6 shows the change of the electron density of states, A¢ = Qgjsorder
— Quraer- For this case (small V) the electron density of states is greater near the energy
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gap than in the case of the ordered system. According to our considerations in Section 2 the
impurity states are expected to lie at a small distance above the top of the valence band.
However, these states lie too close to the band edge (Fig. 3) and we could not reach these
points in our numerical calculations.

For greater values of V(¥ = 0.05 and ¥ = 0.2) we repeated this procedure.
Much more iteration steps were needed for larger V. For the energy 0.1 < |E| < 1.0 the
numerical procedure was not convergent within 60 steps of iteration and, therefore, we
confined calculations to energy in the gap.

For these values of V" we found the electron density of states near the top of the valence
band. Fig. 7 exhibits the results of these calculations as well as the single ““bond impurity”
levels, for V' = 0.05 and ¥ = 0.2. The impurity states form the band and the width of this
band depends on the value of the potential ¥. The density of states has two jumps, which,
as we suppose, are originated from the “F-bond” and the “C-bond impurity” states. The
single impurity states lie closer to the band edge than the jumps of the density of states
(see Fig. 7). For a higher impurity concentration, we expect, there are created more impurity
states, which are shifted from the position of the single impurity level.

4. Conclusions

In our considerations many approximations are involved. For example, we assumed
that for an arbitrary impuricy concentration and for any potential ¥ our system is stable.
For strong impurity perturbations a stability problem of the distorted phase must be consid-
ered also.

However, we might assert that even for a weak impurity potential (for small ¥) two
types of impurity states exist in the energy gap. If a one electron hopping integral between
neighbour atoms, situated farther away from each other (the F-atoms) or situated closer
to each other (the C-atoms), is perturbed, then we have the “F-bond impurity” level
(curve a in Fig. 3) or the “C-bond impurity” level (curve b in Fig. 3). We assert that these
two types of states build up the impurity band which has two jumps (Fig. 7). For a very
weak random potential (V = 0.01) we have calculated the electron density of .states for
the whole energy range. We have observed that near the gap, in the valence and in the
conduction band, the electron density of states is greater than in the case of the ordered
system,

The author would like to express his sincere thanks to Professor J. Morkowski for
helpful discussions.
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