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The transverse spin current susceptibility of disordered Hubbard ferromagnets is
examined employing a Bethe-Salpeter-like equation. A magnon scattering contribution
to the spin wave stiffness coefficient is deduced by averaging out off-diagonal disorder in the
additive limit. Self-consistent numerical solutions of the coherent ladder approximation
are presented in the ferromagnetic case for densities of states, self-energies, and local two-
-particle T-matrices. The application to NiPt alloys brings out the effects of electron correla-
tions and random hopping integrals.

1.. Introduction

The ferromagnetic state in transition metal alloys is strongly affected by off-diagonal
disorder provided that, e.g., 3d- and 5d- substituents participate in the itinerancy. Attempts
to calculate the spin wave stiffness constant D (i.., the magnon energy w, = Dg> for
small g) for such systems require the simultaneous treatment of off-diagonal randomness
and electron-electron interaction within a tight-binding model. Working along this line
a random phase decoupling scheme was proposed in [1], which makes an additive ansatz
for the hopping integrals and circumvents the coherent potential approximation (CPA).
Using the Hartree-Fock approximation (HFA) for the Hubbard-type interaction an addi-
tional magnon scattering contribution to D was derived in [2] for a general type of off-
-diagonal disorder. In the approach [3] D was renormalized by vertex corrections due to’
the random transverse spin current and by electron-electron correlations within the coherent
ladder approximation (CLA) [4], where the off-diagonal disorder is restricted to the
additive limit.

In the present paper the average exchange stiffness D in [3] is completed in the sense of
[2] by a magnon scattering contribution, the explicit form of which evolves from the addi-
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tivity of the current operator. Numerical CLA results reflecting the dynamical aspect of
the ferromagnetism are applied to NiPt alloys. Here the emphasis is on the overall self-
-consistency of the spectral properties arising from both one- and two-particle (7-matrix)
scatterings.

2. Configurational average of the transverse spin current susceptibility

The itinerant d-electron ferromagnetism in A.B, _ alloys can be found on the Hub-
bard model Hamiltonian including both diagonal and off-diagonal disorder as
H™ = >t el ciot Za i+ Z Uingyn,, ‘ (1)
(tlajbaj)
where ¢, (c;,) is the creation (annihilation) operator for a spin ¢ electron in the Wannier
state at lattice site 7, and n;, = cf,c;,. For the alloy configuration {v} the hopping inte-
grals t;¥, the atomic energy ¢;, and the intraatomic Coulomb interaction U} are labeled
by v{(p) referring to the atomic species (v, ¢ = 4, B) located at site i (j). To examine the
dynamics of the ferromagnetic state we first consider at zero temperature the transverse
spin current-spin current response function [3]

. i [dE i}
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Here N is the number of lattice sites, the trace means summation (without spin) over the
one-particle states, G is the one-particle causal Green function within {v}, and <...5,
denotes the configuration average. The effective spin-flip vertex A‘“} satisfies the integral

equation u
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and R, is the position vector. The irreducible particle-hole vertex I} is assumed to be
site-diagonal. Taking.(2) to order g2, i.e. putting A™(q) = g - J™ and AV(E, E+o; q)
= q * A, (E, E+ ), we get with (3) and (4) by using cubic symmetry the following expres-
sions ’
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. . dE i y > .
AD(E, E+w) = [ -3, f o i (B, E+o; o) Gt 1(E)AE,.,Z(E E+0)Gi(E+ o),
1 . )

(N
= —it"R~R)). (8)

In an earlier study [3] the contribution (6) was neglected by a factorization ansatz.

To give a lowest-order estimation of the vertex corrections hidden in %7~ we expand the

random quantities around their configuration averages. Moreover, we make the replace-

ment I}V = —(U}>. = —U (or one may choose an appropriate T-matrix value —<{T}>,).
1t

Then by performing a double Fourier transform we solve (7), yielding AM Y APk
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in first order of j

where %,(z) = {G{"(2)), is the averaged Green function. In order to get the simplest
non-trivial approximation of 77 ~ we have to replace the G in (6) by %, so that we are
left with fluctuating terms in the second order. Thus, in momentum representation, (6)

reads
et i [dE 1 o |
(g=00)= aN | 2 NE A3 ey B+ w)f; k+quk1(E) (10)

kg

By inserting (9) into (10) we arrive at
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E f k+q¢(ﬁ)%k1(E)

(11)

Within the HFA treatment [2] an expression analogous to (11) was derived in the weak-
-scattering approximation, and the correspondence with virtual magnon scattering proces-
ses was discussed. According to the spatial inhomogeneity of },-“,‘-‘, the vertex correction in (11)
appears as a consequence of the off-diagonal randomness. For pure or only diagonal
random systems the result (11) tends to zero due to time-reversal symmetry.
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Let us carry out the configurational averaging in (11) for an alloy with off-diagona
disorder in the additive. limit

v=A

vu BB | v, . ;s v _;—(tAA_ -BB)
LY =t g+ (Gjian); = H =

(12)
where only nearest-neighbour (n.n.) transfer integrals ¢} (shortly ™) are included. This
allows us to write j = j@+jOO with jOO = Z J“){”, where only the random part

JVO gives a nonzero contribution to (11). The current 7MY obtained from (8) and (12)
takes the Fourier transform

Uy Y —i(E—F)Ryyy > 7
Fab = IR = e E R vis()+ Vos(R)), (13)
where
s(f) = Y SREE, (14)
J(#1)

In view of (11) we must average products of the type z KRIFO" K+ g <K +qlf R

According to the off-diagonal CPA [5] the decouphng scheme

T(Dpy2-
(1)u (1)v m ™ Ve m=n ‘=
Cm Pe = {(Jmu} G, m#n (15)
leads with (13) and (14) to
2 CRITOHR+g) <K+ TV e = N ((Vis(R) + Vi zs(k+9))
X (Vg 35(k + )+ Ves(k)). (16)

The terms m # n in (15) give rise to Z((kl]“’”[k-i—fj)}c = c(t* —t*P)No;,Vis(k) not

contributing to (11), because V;s(k) is an odd function of k. Substituting (16) into (11) we
find
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In the spin wave problem, we are interested in the magnon energy w, = Dg? valid
for small ¢. The spin wave stiffness constant D defined in general in [6] (cf. [3,7]) consists
now of two terms

1 N
D = Dy— -——— lim lim ¥; (g, ®) (18)

By— N, w=0 g—0
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corresponding to the so-called [2] average exchange and magnon scattering contributions.
By taking into account CPA vertex corrections originated from off-diagonal disorder of
the type (12), the explicit form of D, was derived to be {3]

u

1
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n(n,—n,)

where
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The quantities involved in (19) and (20) are given below, and E* = E+i0. The second term
of (18) is available from (17). It represents the vertex correction resulting from the inter-
play between interaction and off-diagonal disorder, provided that the spin wave is scattered
by an inhomogeneous medium.

3. Computational method

The dynamics of the electron system in the ferromagnetic phase will be investigated
in detail by an energy-dependent renormalization of the spin-band splitting. Adopting the
CLA scheme [4] we can summarize the basic formulas as follows

Gil2) = (z—"—1*8s(k)— 2 (k, 2)) ", 2D
2k, 2) = 00(2)+201,(2)5(k) +0,,(2)s7(K), (22)
(Bu(@Pe =0, (1=0,1,2) (23)
A B -
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i dE' 7!
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U; 2mi

Glyio'(z) = FOo‘(z) +F§J(Z)T(‘;ia'(z) + ZFOG(Z)P‘IG'(Z)T‘IJM(Z) + FV%G(Z)T;;J(Z), (27)
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1 -
Fio) = Z Gio(z) [s(B)T, (28)

=

"
z : 1 : :
n= Ry = — — f dE Im Fo (E™). (29)
. T :

Here we introduced the coherent self-energy Z,,(I—E, z), the one-particle scattering matrix
parts 7;,(z) given explicitly in [4], the correlation-conditioned self-energy 2y;;,(E), the
two-particle T-matrix T7(E+E’), the partially averaged Green function Gi.(E), the aver-
age number of electrons per site (per site per spin) # (n,), and the Fermi energy u. The
functions o,,(z) are determined by the off-diagonal CPA coupled conditions (23), which
contain the renormalized atomic potential &.,(z) (bare values are denoted by & = &").

To simplify matters, we choose the density of states and the mean-square velocity over
a constant-energy surface related to the unperturbed pure B-band as

1 4 . 2 E\2 V2 .
v Z HE—¢e) = i [1— <Wg> ] 0(w” —|EJ), (30)

k

7\ 273/2
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N w? w ]
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where £+ = tBBs(k) e® = 0, w® = 6t°” is the half-bandwidth within a sc n.n. model, and
» is of order wPa (@ — lattice constant). By means of (31) the k-summation in (20) can
be rewritten, using (21) and (22), in the form

36
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The functions Hy,,(E*, E*) can be calculated by the residue method. Hence, in the spin-
-flip case, it results in
Hoy = A(L+wy+wia+w +w,0), (33)

Hy = Az + 200+ 2,5 + 2,54+ 20 Wy + ZoWp0 + 2 W +2,5W,2), (34)
Hayy = Azl + 25+ 23+ 254 ZuZn + 2020+ 2020+ 2002, + 2272

+Z¢1Zl2+ZT1W71 +212W12+Z¢1W¢1+Zl2W¢2_7) (35)
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with ]
i(1—z2)V1—22
A=— ﬁ — Wy = i Z_“_)l/__ T (36)
36%0,,(E")o, (ET) (21— 212) (20— 2,1) (21— 2,2)

(v +1201) \/ w120, E*—0aq,
726,, 726,, 360,,
where w,, etc. are obtained by interchanging the labels, and ¢,, = ¢,,(E"). Besides, the
analytical expressions of H,,,(E*, E*) and F,(E*) are available from the conductivity
treatment [5] by ekdding spin indices; F, E+) as well as F,(z)in (28) can be found analyti-

cally on the basis of (30).

Zg1,2 & T

; (37

4. Numerics and discussion

Now we compute self-consistent ferromagnetic solutions of the CLA scheme (21)
to (29), completed by the assumption (30), for suitable values of the input parameters
wi(= 6144, wh, 4, U'(= U}), ¢, and n. The average electron number with spin ¢ at v
sites can be evaluated from

"

n;=J

- o0

u
1

0AE)ME = — — f dEIm G5 (ET), (v =4, B) (38)
T

where g,(E) is the partially averaged spin-dependent density of states.
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Fig. 1. a) Spin wave stiffness constant D, b) Fermi energy ¢, ¢y de conductivity oy, and d) partial magneti-
zations m"” versus the scattering strength 6 = ¢4 —&8 for two AcBy - alloys with (w, U4, UB, n) = (1,25,
4.2,0.3)
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The numerical example of Fig. 1 gives HFA results in the case of only diagonal disor-
der (w? = w® = w). This means that the self-energy Xy = U’n’, appears instead of
(25) and (26), both ¢, and o,, vanish. Fig. 1 shows the stiffness coefficient D in units of
dy = +wa?, the Fermi energy u, the partial magnetizations m' = nj—n;, and the spin

up conductivity given at zero temperature by

= 61 [(Z(Im o))+ — Re {i v/1—22 (i(1=22)+3z,Im o, (;ﬁ))}] , (39

Tm o0,(1*)

where z, = pt—ao(1), and & = e2(vE2)2N/3n?V 1. Note that g, = 0 arlses from the satu-
rated magnetism. There D > 0 and m > 0 hold (m = {(m"), = cm A4 (1—cmP), so that
the criterion for stability of the ferromagnetic ground state against spin wave excitations
is fulfilled.

In Figs 2-5 we are trying to model Pt,Ni, _, alloys, as an appropriate object for CLA
calculations in the presence of off-diagonal disorder, by adopting the pure values (cf. [8])
@wP, 2wt B — N, UR UN) = (7.8, 415, 0, 6.61, 14.11)eV, and n" =04, " =0.6
corresponding to the number of d-holes per atom. In alloying n = cn’*+ (1 — c)nN‘ is fixed
for a given concentration c.
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Fig. 2. Electron densities of states QG(E) (v = A4, B) and g4(E), averaged partially and totally, resp., for
an Ao.1Bo.o alloy with the set (2w, 2w, e4—¢B, U4, UB) = (1.88,1,0,1.59,3.9

L ¥ is the volume of the system.
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The calculated densities of states ¢, and 0, = <o>. in Fig. 2 and Fig. 3 illustrate
the variation of the spin band splitting with ¢ in the case of off-diagonal disorder. The
two-particle correlations provide large tails with small humps, especially for the minority
spin (]) electrons. According to the degree of saturation the shape of the spin T band is
weakly affected by correlations. In Fig. 3 and Fig. 4 we present at ¢ = 0.175 in more
detail the spectrum resulting from the self-consistent CLA computation. In this nearly
saturated case the imaginary parts of the retarded self-energies o,(E) and Zy,(E) indicate
the distinct damping of the electron states with spin 7 and |, because only electrons with
antiparallel spins interact. Note that Fig. 4 exhibits, in units of 2w®, the retarded func-
tions 2},,(E) and T"(E) ascribed to the causal functions in (25) and (26) (site index 7 is omit-
ted). One sees that the effective local vertices T"(E) produce the damping effect on 2y,(E)
and g.(E) in the two-particle region. '

b B~ 05 |

Fig. 3. Component densities of states g;(E) at various concentrations c¢; alloy density of states g4,(E),
real andi maginary parts of the coherent self-energy contribution ogs(E)at ¢ = 0.175. The parameter set
is the same as in Fig. 2
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In Fig. 5a the reduced values of the effective Coulomb interaction 7°(2y) are drawn
as a function of composition of Pt .Ni, ... alloys. The absolute values of T"(2u) decrease
with ¢ from 6.5eV to 3 eV, i.e., the bare value U™ is diminished by a factor of about 4.
The transition from ferromagnetism to paramagnetism connected with a critical concen-
tration is pointed out by means of the stiffness coefficient D, (Fig. 5b) and the spin-depen-
dent carrier densities n, and n, (Fig. 5¢). Contrary to the HFA values, the CLA results of
"D, in Fig. 5b show a peak at ¢, and refer to unstable ferromagnetic solutions for ¢ = 0.35
and ¢ = 0.5in Fig. 3. A critical concentration of about ¢,, = 42 at. % Ni in Pt is confirmed
theoretically [8,9] and experimentally [10]. Note that correlations lead to Dy; = 558 meVA2
at a = 3.8 A, whereas the HFA result for the same parameters is about two times greater.

In the numerical work only the average exchange stiffness D, was included. By taking
into account the magnen scattering contribution (17) to (18) one may expect near ¢,
a smaller D-maximum.
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Fig. 4. Real and imaginary parts of the self-energies Zy,(E) and effective vertices T"(E) caused by electron-
-clectron correlations; ¢ = 0.175, the other parameters as in Fig. 2
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Fig. 5. a) Effective Coulomb interactions T7(2x), b) spin wave stiffness constant D, (@) compared with

HFA results (A1), ¢) partial and total carrier densities n; and n,(O) versus ¢ for Pt.Ni; — . alloys correspond-
ing to the parameter set in Fig. 2

Editorial note. This article\was proofread by the editors only, not by the authors.
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