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It appears that for the hard-core potential with Yukawa tail, —e exp [—z(x—D)]/x,
thermodynamic properties calculated through the variational theory are obtainable in almost
fully analytic form with the use of hard-core fluid as the reference system. For one negative
Yukawa tail minintization of the right-hand side of the variational inequality for the Helm-
holtz free energy gives diameters of hard-cores of both systems equal, independently of the
temperature and the density. Therefore, the whole scheme of calculations is equivalent to
adopting the first order Zwanzig 1/T expansion. Comparison with recent calculations of
properties of Yukawa system with z = 1.8 presented by Henderson et al. (Mol. Phys. 35,
241 (1978)) shows that our results for free energy are very good, mainly due to the smallness
of the A4, term for this system. The promising features of the variational method for other
Yukawa type potentials are outlined.

1. Introduction

There is a steadily growing interest in properties of a hard-core fluid with Yukawa
tail potential, i.e.

I.oo, X < 1,
u(x) =4 _, O
\(7 exp[—z(x-1)], x <1,

x = rfo, where ¢ is the diameter of the hard-core of the molecules. For one thing this is
because of the existence of Waisman’s [1] analytic solution of direct correlation function
¢(r) for this potential in the mean spherical approximation [2] (MSA) defined by

c) = —Pur), r>o ®

* On leave of absence from Department of Theoretical Physics, Jagellonian University, Krakow,
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(B = 1/kT, T is the temperature) with the exact boundary condition A(r) = —1, where (r),
the total correlation function, is connected with c(r) through the Ornstein-Zernike equation

h(r) = c(r)+e Jh(lr' De(lr—r'Ddr’. €)

Considerable progress on the way of handling complex set of nonlinear equations resulting
from Waisman’s solution and calculation of various thermodynamic properties was made
by Henderson et al. [3] and Heye and Stell [4, 5]. In addition Waisman et al. [6], Hoye
and Blum [7] and Blum and Heye [8] have derived MSA solutions for linear combination
of Yukawa functions, and mixtures. It should be also mentioned that the Yukawa potential
is very convenient for generalized mean spherical approximation (GMSA), widely used
in calculating properties of polar fluids [9]. In GMSA method Eq. (2) is viewed as form
of ¢(r) with parameters K and z’ which are not directly connected to ¢ and z, but are determi-
ned through thermodynamic consistency on various routes.

Recently, Henderson et al. [10] (HWLB) published Monte Carlo results for the equation
of state for Yukawa fluid with z = 1.8 and compared it with various approximation
theories (including the perturbation theory). They concluded that perturbation works well
for that system while MSA results are less satisfactory. However, the modifications of
MSA (EXP and GMSA) give good results. As it will be demonstrated in this paper varia-
tional theory applied for Yukawa potential with a hard-core will produce an analytical
equation of ‘state. This equation of state can be utilized for thermodynamic calculations
by the use of only a desk calculator.

2. Variational method for negative Yukawa potential

According to Mansoori and Canfield [11] the Gibbs—Bogoliubov inequality will be in
the following form for the negative Yukawa potential with the hard-sphere fluid as the
reference system

ge—z(r a)le

A Ao
rgo(r) — = ; 4)
rioc

NKT NKT

where Ao, go(r) denote the exact Helmholtz free energy and radial distribution function,
respectively, for the hard-sphere reference system of diameter d, and ¢ is the number
density of Yukawa system. Here d is variational parameter, with the understanding that
only ratio ¢ = d/s > 1 would be physically acceptable. Upon the introduction of dimension-
less variables x = r/d, ¢* = 003, n = med3/6 = ng*c®/6, T* = kTje we get

A A 2
P [ o*ec? J‘ e *xgo(x)dx. (5)

NkT ~ NkT  T*

A necessary requirement of variational as well as perturbation theories is the correct
knowledge of the hard-sphere system. The best accessible equation for the Helmholtz free
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energy is the Carnahan-Starling [12] formula
Ao _ n(4—3n) Ay

NkT  (1—n)®  NkT’ ©)

where A4 is the free energy of an ideal gas. For the hard-sphere radial distribution function,
analytic solution of Percus—Yevick equation due to Wertheim [14] and Thiele [15], gw+(r),
and its improved Verlet-Weis [13] version, gvw(r) are exploited. In the case when simpler
but less correct gwr(r) is used, the integral in formula (5) appears to be nothing but G(xc),
where G(s) is Laplace transform of gy(r)

G(s) = | e"“xgwyr(x)dx. N
1
According to Wertheim [14]
G(s) = sL(s)/12n] L(s) + S(s)e’], 8®)
where
L(s) = 12n[(1 +3m)s+(1+2n)] ©)
and
S(s) = (1—n)2s®+6n(1 —n)s? +181y%s— 12n(1 +21). 10
Therefore by setting Egs: (6) and (7) in Eq. (5) we get
A 4-3 2
< ( ") = 0*e*c*G(zc). {an

NkT ~ (1—n)?  T*

More accurate results are expected to be obtained when go(r) = gyw(¥) is used in
Eq. (4), gvw(r) given by [13] .

gyw(r/d, n) = gwr(r/dw, nw)+08,(r), (12)
with
4 . (r—d)
0gy(r) = — e """ % cos u(r—d, (13)
-
nw = n—n°/16, (14a)
dwinw = &°/n, (14b)
and
A (1-0.71177w—0.11453)
3 2
=gl , (15a
d i (1—'1w)4 )
24A/d
il (15b)

Hwgwr(l, nw) '
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Integral involving dg,(r) is elementary, i.e.

o]

e-—z(r—a)/o' d3 A d
55, ar=5Zgumo  MOTEC (16)
rle c d (pd + zc)* +(ud)
d
whereas, after introducing
dy  dy
C = —— = — c, 17
W= = a7
and the following manipulations B
=] d/dw
e—z(r—a)/a'
f gwr(r/dw, nw) W—r‘/;— = eZC\ZN [G(ZCWs Hw)— j xgwr(X, ﬂw)e_zcwxdx:I > (18)
1

no matter whether dy, > o or not (however, d = o). Since d/dy is nearly equal to 1 (d/dy —1
= 0.01 at most) we may expand gwr(x, ) around 1 and use the fact that gyr(x) and its
derivatives can be obtained using continuity of gw(x, ) — cwr(x, ) and its three derivatives
(the same procedure was applied by VW [13]). The direct correlation function, ewr(x),
for x < 1 is given by

cwr(%) = — Ay —6nwlox —F nwdi x>, (19)
where
Ay = (1+2’7w)2/1(1_’7w)4, (20a)
Ay = —(L+5 nw)* (L —nw). (20b)
After a little labor
djdw 3 .
dldy—1)
f xXgwr(x)e *"dx = e ¥V Z gl 1)
: i+1
1 i=0
where
- 1+
By = By = gwi(l,nw) = —(l_zw)“; - (22a)
S B ~ (ZCW)Z
Bio1 = Bi+B;_(1—zew)+B;— 5| —zew+ (0i3+6:4)
- 2 zew)®
+ B, (zew) . (zew) Sia, (22b)
9 6
o ~ 6ni N 61 :
B, = 67112"‘% Ni, By = Z'I » By= —';—'la (23)



587

(8;; denotes here the Kronecker delta). Eventually, free energy calculated with the use of
gvw(r) becomes

A G LA A N A @9
NKT = (1—g)® | T* NKkT  NkT NkT’
j=1
where
A .2
NLT = —2ng*e’cyG(zeyw, Nw), 2
. = i+1
Al ] (d]dy—1)'
= 2r0* z(1—cw) 2 Bi -, 26
NeT = ree Cw i+1 Y
i=0
42 A d
L ppgreimogp A pdrze 27)
NkT d (ud+zc)’ +(ud)

3. Numerical results

Minimization of the right hand side of the variational inequality (4) for the Helmholtz
free energy with respect to ¢ gives d = ¢ (¢ = 1), which is independent of temperature
and density. This value of d (not equivalent to a minimum of A4 in the strict sense) is the
lowest physically acceptable, because of d < o there exists the range d < r < ¢ in which
the perturbation potential becomes infinite. As a result, for d = ¢ calculations reduce to
taking into account the first order in 1/T Zwanzig [16] expansion

A Ag Ay

- 28
vir S ner TNt (28)

With this conclusion Eqs. (11) and (24) become extremely simple and as we will see the
results are almost the same as those achieved by more sophisticated methods. The results
of the calculations based on Eqgs. (11) and (24) are compared with Monte Carlo data and
other approximation schemes recently published by HWLB [10]. The free energy values
with z = 1.8 are presented in Table I, where Var (WT) and Var (VW) denote free energies
calculated from Eqs. (11) and (24), respectively. It is seen that both Var (WT) and Var(VW)
give values very similar to those obtained by other methods including the second order
perturbation theory [10] using computer data for {(N;» and {V;N;>. This is because A,/NkT
(which is negative), the second order term in Zwanzig expansion, is very small for Yukawa
with z = 1.8, as was calculated by HWLB. According to them it is in absolute value at
most 0.07 (at ¢* = 0.2) comparing to ~0.3 for square well and Lennard-Jones fluid
(see Figs. 2 and 10 of Henderson and Barker [17] review article). For high densities the
variational equation, equivalent to the first order perturbation theory for d = o, gives
the free energy values, which are smaller than the HLWB second order perturbation theory
results, although A,/NkT is negative. This result is due to inaccuracies in the hard sphere
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TABLE I

Comparison of variational calculations of A/NKT for the Yukawa fluid (z = 1.8) (ideal gas terms not
included) with the results of other theories calculated by BWLB [10]

o* | T ‘ Pert ! MSA EXP Var(YW) | var(w
0.4 e 1130 | 1.130 1o | 1130 1.130
| 2.00 1132 —1.139 —0.151 ~0.129 ~0.127

1.50 0559 | —0.569 ~0.590 ~0.549 ~0.545

1.00 —1.422 —1.443 —1.493 ~1.389 ~1.383

0.6 oo 202 | 2082 2,042 2002 | 2002
2.00 0.048 0.039 0.025 0.040 | 0045

150 | —0.620 —0.631 | —0.654 —0.627 | ~—0.621

100 | -1962 —1976 | —2.027 ~1.962 ~1.953

0.8 % 3.403 3403 | 3.403 3.403 3.403
2.00 0.613 0.600 |  0.588 0557 | 002

1.50 l ~0318 —0334 ~0.355 ~0338 ~0332

1.00 ~2.183 ~2206 —2247 ~2.209 ~2.199

070 | —4586 | —4164 —4.695 ~4.614 ~4.600

TABLE I

Comparison of variational calculations of PV/NkT for Yukawa fluid (z = 1.8) with the results of Monte
Carlo and other theories calculated by BWLB [10]

! MSA
o* T* MC Pert GMSA? | Var(VW) | Var(WT)
I E2 1 pb
0.4 © 2.52 2.518 2518 | 2.481 2.518 2.518 2.518
2.00 1.08 1.123 1122 | 0943 1.122 1.100 1.104
1.50 0.69 0.664 0.666 0.422 0.655 0.627 0.627
1.00 —021 | —0.246 | —0.229 0.645 | —0318 | —0318
0.6 ) 4.22 4.283 4.283 4,091 4283 | 4.283 4.283
2.00 2.04 1.985 1.978 1.594 | 1.992 1.958 1.962
1.50 " 1.1 1.226 1.219 0.760 |  1.235 1.183 1.188
1.00 —0.27 | —0.281 | —0283 | —0911 | —0.288 | —0.367 | —0.360
0.8 © 765 | 7750 | 7750 7.001 | 7.750 7.750 7.750
2.00 427 4.459 4.433 3.476 | 4.464 ‘ 4.425 4.424
1.50 3.31 3,368 3.332 2.301 | 3.373 3.318 3.316
1.00 1.29 ‘ 1.195 1.137 0.049 1.198 1.102 1.099
0.70 —1.63 | —1.582 | —1.668 | —3.072 | —1.594 = —1.747 | —1.751

& Calculated from energy equation. P Calculated from pressure equation.

radial distribution functions which we have used and probably also due to some inaccuracy
in the Monte Carlo data [19] exploited in the HWLB calculations. For example, as was
previously pointed out by Madden and Fitts [18], Verlet-Weis parametrization of go(r),
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based on unpublished Verlet—-Schiff simulation, [13], predicts go(d), which differs by 0.06
for ¢ = 0.8 from extensive Monte Carlo simulation of Barker and Henderson [19].

It should be also mentioned that the difference between the free energies Var (WT)
and Var (VW) values is very small (e.g. of 0.015 for ¢ = 0.8). Similarly, taking into account
only B, and B; terms in Eq. (21) instead of four terms makes difference of at most 1074,

Having the Helmholtz free energy, pressure can be calculated through numerical
differentiation. The variational results as presented in Table II are slightly inferior to the
results of other theories. Next, because of very simple temperature dependence of the first
order perturbation free energy, the configurational entropy and the internal energy can be
easily obtained as:

S A4
.S E_E, (29) .
Nk N
U A
Sl (30)
Ne  NkT
TABLE III
Values of U/Ne for the Yukawa fluid (z = 1.8)
T#* | MC Pert MSA GMSA Var(VW) ' Var(WT)
! ) = ==
0.4 0 | —2.495 —2.495 —2.513 —2.495 —2.518 ‘ —2.513
2.00 —2.583 —2.552 | —2.568 —2.595 —2.518 —~2.513
1.50 -2.622 —2.572 —2.594 —2.658 —2.518 —2.513
1.00 —2.832 —-2.610 —2.665 | —2.518 -2.513
0.6 _ o] —3.975 —3.975 —3.995 -~3.975 | —4.004 —3.995
| 2.00 —4.030 —4.006 —4.017 —4.031 | —4.004 —3.995
} 1.50 —4.051 —4.017 —4.026 | —4.056 —4.004 —3.995
1.00 —4.073 —4.039 -4.050 | —4.145 —4.004 | —3.995
0.8 B —5573 | —5573 | —5.602 | —5.573 —5.612 —5.602
200 | —5.622 | —5589 | —5608 | —5.598 ~5.612 —5.602
1.50 —5.630 . —35.594 | -5.611 —5.607 —5.612 —5.602
1.00 —5.635 ! —5.605 —5.616 —5.529 | —5.612 —5.602
0.70 —5.658 [ —5.619 | —5.624 —5.672 | —5.612 —5.602

with 4, defined by Eq. (28). S and U as given by Eqgs. (29) and (30) are temperature inde-
pendent which is not satisfactory. However, it should be mentioned that for the Yukawa
fluid the internal energy is very weak function of temperature as presented by the HWLB
Monte Carlo calculations and the results of the other theories in Table ITI.

4. Conclusions

It is shown that for the Yukawa fluid, through the variational method it is possible
to obtain thermodynamic quantities in analytic forms. This is because for one Yukawa tail
minimization of the right-hand side of the variational ihequality for the Helmholtz free
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energy gives d = ¢, which is independent of temperature and density. As a result, thermo-
dynamic properties can then be calculated with the effort incurred not very much greater
than for the case of hard-sphere system.

Although the intermolecular Yukawa potential is a simple potential model for some
values of z and ¢ of this model qualitative calculations can be made for real fluids. However,
with the use of two Yukawa functions (one negative and one positive) one can construct
potentials functions in more realistic forms resembling the true pair potentials. Having
this in mind variational method offers promising possibilities because it can be very easily
generalized to the case of linear combination of Yukawa functions with the same ¢ or for
mixtures of Yukawa functions with hard-cores of additive diameters. We have found that
for two Yukawa functions there exists 2 minimum for the right hand side of inequality (4)
for a wide range of potential and thermodynamic parameters. The variational parameter
¢ (Eq. (5)) is then temperature dependent, this remeding the deficiencies of the one Yukawa
case. Minimization in the case of two Yukawa potential is not difficult because the free
energy is in analytic form. The results obtained should then be comparable in accuracy to
the results of the other successful theories of liquids.
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