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ON THE BOUND STATES FOR HIGHER ANGULAR MOMENTA
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Using the fact that new bound states appear whenever the scattering length becomes
infinite, we deduce a number 4, such that the potential AU(r) will certainly have bound states
if A is greater than 4,, for h’igher angular momenta.

’ 1. Introduction

If 5(K; 1) is the /-th order phase shift of the radial Schrédinger equation for the
potential AU(r) and energy K2, it is known from the theory of low-energy scattering that
when the scattering length a;, defined by

1
a(d)y = — Lt

— 1
k-0 K* " cot 6,(K; A) o

becomes infinite for 4 = A,, then, for / > 0, we have a zero-energy bound state and the
potential AU(r) is just strong enough to produce a new bound state for 1 = 4, [1, 2].

This fact has been used to estimate numerically the minimum strength 4, of a poten-
tial to produce bound states, at least for certain potentials [3].

2. Problem

We shall now obtain a value A, such that the potential AU(r) will certainly have bound
states when 1 > ;. This inequality, as we shall see, supplements another inequality, which
follows from Bargmann’s inequality, viz. there are no bound states if A < 4, ; 4, to be
defined.
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In the sequel we shall assume that U(r) < 0 only for all r > 0 and that A > 0 (the
potential is attractive everywhere). We shall also assume that r**> U(r) - 0 as r - oo,
otherwise the scattering length defined by (1) does not exist.

We shall start with an inequality which is valid when 0 < [§,] < 7/2 [4] (cf. Appendix
for the proof):

tan (5 KAB,
O ey’ e
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Next we use the well-known relations
~l '

O = o ¢'+0(d"),
20!
me) = — % e "V +0(e™). (5)
If we substitute (5) in (3) and (4), we get
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Substituting (6) and (7) in (2) and remembering that for an everywhere attractive
potential, §; > 0, [5], so that tan |6,] = tan J;, we get
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Now (8) shows that |a;(4)] = co when
A=1,= —-BjC, &)

unless Lt §,(K; 4) is already > 7/2 for 4 < 4, in which case (2) would no longer be valid.
k-0
In either case it follows that for a value Ay of 4, such that Ay << A4, |a(4p)] = 0 so

that bound states exist for 1 > 4, and so bound states certainly exist for 1 > 4,.
Let us check this conclusion in the case of an attractive square well,

U(r) = —V =const forr<a,
Uir) =0 for r > a. (10)

Substitution of (10) in (9) after the definitions (6) and (7) of B; and C, are used, yields,
after simple integration,
QI+1)@2l+5)
b 2Va®

1

>

ie. certainly there are bound states if AVa? = 3(2/+1}2/+5) = 10.5 and /= 1. On
the other hand it is known from theory [6] that there are bound states if AVa? > n? ~ 9.86.
From Bargmann’s inequality, viz. [2],

[v9]

{

< —— | ru@|dr,

"y Qi+ rdlU(r)ldr
0

where n; is the number of bound states, it follows that if

1 o0
Qi+l J rAlU(mldr < 1,
ie. ’
a2t _ an
| rlU)ldr

0

then there are no bound states.
So the inequalities (11) and A > 4,, 4, given by (9), supplement each other.

3. Conclusion

The potential U(r) can certainly produce bound states if

QI+1) | P DUEdr
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APPENDIX (cf. Ref. [4])

We wish to deduce the inequality,

tan (6,) = (KAB)/[1+M(C)/B)].
For this we shall need the following (cf. Ref. [5]):

u = rj(Kr) cos 8,4+ AKrn(Kr) | j (Kr'YU(rYu()r dr'
o

+AKrj(Kr) | n(Ke' YU Yu(ryr'dr’, (A1)
where
sin §; = — KA | rj(Kr)U(r)udr, (A2)
)
% _ g U(r)u>d A3
5 ryu-dr. (A3)

0

(Eq. (A3) is erroneously given in the reference quoted.)
Substitution of (Al) in (A2) gives

tan 6, = KAB,—KJ\*C,+0(}\%), (A4
where B, and C, are as defined in (3) and (4).
Applying the Cauchy-Schwarz inequality to (A2) and using (A3) we get,
2 2 0
sin” §,(1) < A°KB, 7 [6M)],
so that

< (-KB)  [eot ).

On integration we get

< (—KB)) [cot §,(A)—cot 5,(8)],

2o |

whence

1 1
> — KB, cot (1) = — — KB, cot §,(g).
4 &
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If we use (A4) on the right side of the last inequality and take the limit e — 0, we
- oget

1 N i (o
1 —KBl cot ()[()u) = - “B—‘ 5

1

Remembering that for attractive potentials §, > 0, if in addition 6, < 7/2 this gives the

required inequality.
(In the special case I = 0, the inequality (2) can be sharpened, but this is beyond the

scope of the present paper.)
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