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ON THE CONTRIBUT ION OF THE ORIENTATION
AND VELOCITY RELAXATION TO THE ATOMIC LINE SHAPE.
II. LOW PRESSURE REGION*

' . By E. CzucHAs aND E. PauL
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( Received January 31, 1979)

Formulae describing the intensity distribution in the core of an isolate atomic spectral
line in the very low pressure region are given. These formulae can be used for anisotropic
interaction potentials too. Test calculations have been carried out for the resonance line of
sodium perturbed by argon. The .calculated proﬁles are narrower than the corresponding

~ Voigt profiles and in general asymmetric.

1. Introduction

In order to obtain the correct intensity distribution of an atomic line in the low pres-
sure region one has to take into account the combined effect of various phenomena that
influence the line profile. Two of them have the fundamental meaning for this problem,
namely radiator-perturber collisions and translational radiator motion. Traditionally,
it has been assumed that both of these broadening mechanisms are statistically independent
so that the line profile can be described by a convolution of an integral of pure Doppler
and pure pressure broadening profiles. In most calculations the Doppler effect has been
treated in the approximation that collisions do not alter the radiator velocity. In that
case the Doppler profile remains Gaussian whereas the pressure broadening theories lead
to a Lorentzian profile. Thus straightforward integration of the convolution integral gives
a combined profile which is referred to as a Voigt profile. Many authors [1-7] suggest
some departure of line profiles from the Voigt profile. Especially Ward et al. [2] showed
that all correlation effects are a function of the perturber/radiator mass ratio A and they
can be observed in experimental investigations in systems with A > 5. The present work
is the continuation of the previous paper [6], hereafter referred to as I. The formulae for
the intensity distribution of atomic lines given in that work have presently been used for
numerical calculations. For the sake of further considerations we divide the entire low
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pressure region, where the binary collision approximation holds, into three parts: (f) very*
low pressure region where the Doppler effect dominates correlation effects, (i7) intermediate
region where neither of our approximations holds and (i) moderate region where the
pressure effect dominates the Doppler effect.

In paper I we generalized the formulae derived by Bielicz et al. [3], which describe the
intensity distribution of the line in the moderate pressure xegion, and applied them to the
case of anisotropic potentials. Thus reorientation effects have been included in the spectral
-line-shape theory. In the present work there are given formulae describing the line profile
in the very low pressure region. The derivation of these formulae is based on the previous
work of Czuchaj [5], who investigated the influence of radiator motion change due to
collisions with perturbers on the line shape in the so-called Doppler limit.

In the next section we will generalize the formula for the line intensity distribution
in the Doppler limit for the case of anisotropic potentials.

In Section 3 we will make use of the sudden approximation to express this formula
in the form enabling us to use it in numerical calculations. Section 4 is devoted to numerical
calculations and the discussion of the obtained results.

2. Intensity distribution of a spectral line in the Doppler limit

In paper I we have generalized the spectral line shape theory for the pressure region
where the binary collision approximation holds to the case of anisotropic potentials.
Particularly, on the basis of the approximation introduced by Bielicz and others [3], we
gave formulae describing the line profiles in the moderate pressure region. Now we want to
do the same for the very low pressure region.

Let us consider, for example, a transition between two atomic states o;j; and agjy,
where o, (@ = i or f) stands for a principal quantum number and j, denotes the quantum
number of the total angular momentum of the radiator without a nuclear spin. Then the
line profile of the transition considered is given by the imaginary part of the statistical
average of a resolvent operator as

L) = —m Im Rif'G), )
where x = w—w;; and

J = Ijl_]fl’ b4 Iji+jfl’ M = 0’ ila i—z, viny iJ. (2)

value of the resolvent operator for the isotropic medium does not depend on M, we limit

ourselves to the calculation of R{}”(x) for M = O only.

In the papers [4] and [5] one expanded Ri}’(x) in the power series of the dimensionless
quantity Nomob/x, where N, is the mean number of atoms in the interacting sphere, m,
is the mass of the radiator, 7 is the mean velocity of relative motion and « is the momentum
of the photon. Under the condition that

Nomoﬁ/K < 1, . (3)
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the series can be truncated after the first term. A similar procedure can be performed for
the case of the anisotropic potential. Let k,, be the component of the radiator momentum
parallel to the direction of the incident photon and Q(koz/Zmo) denotes the distribution
function of kq,, then R;, (x) is, to the first order of the expansion, given as follows

=)
: 2

S . K
- R{(x) ~ f dko,g(k?,,/Zmo)[ 5

-

ir(koz J )] o “

0

where « is the propagation vector of the photon, and D;(k,,, J) is the collisional relaxation
operator fjif (c0) defined as in paper I (cf. Eq. (10)) after averaging over the perpendicular
components of the radiator momentum with respect to the direction of the incident photon.
According to the paper of Fiutak and Paul [4] the function &;(k,,, J), defined for the i — f
transition, is to be put in the form

Qif(kOm J) = %‘ I:@(kOm s jl)— Q*(ka’ O‘f: Jf)’ » (5)

where the function ®(k,,, «,, j,) is expressed by matrix elements of the transition operator
T diagonal in the quantum number m, and the relative momentum k. As was mentioned
in paper I, all the elements of the T diagonal in m, are equal. According to Eq. (10) of
paper I we have

B(koz» % Ja) = n(2n)*  dkyo(ki[2my) § dokoyro(ks,2mo) Tu(@e J), @ = i(f),  (6)

where 7 is the perturber density, m;, k, denote respectively the mass and momentum
of the perturber and o(k2/2m,) stands for the distribution function of the perturber mo-
menta. In contradistinction to the analogical expressions derived in [4] and [5] the last
formulae cover the reorientation effect of atoms as well.

3. The reorientation effects

The aim of our present consideration will be to express the diagonal elements of T in
the form that enables us to calculate the considered line profile numerically. Although,
the present form of the transition operator T covers the reorientation of atoms, we will
use the traditional straight line trajectory approximation in our further consideration.
In this approximation any diagonal element of T can be expressed as

L% Jo) = — fdbb[lfS(aa,ja; ~ 00, + 0,7, b)], D

w
(2n)?
0

where b is the 1mpact parameter. The function S(a,, j,; — o0, t, v, b) satisfies the well-known
equation

7] ‘
_a‘i S((xmja; —, 1,0, b) = '—iV(aasja)S(O‘a:ja; —00, 1,0, b) (8)

with the interacting potential ¥(o,, j,) depending on quantum numbers mg.
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In the case of j, = 0 and j, = 1/2 the potential is degenarate with respect to quantum
number m, and the solution to equation (8) is as follows

, ,
S(ttgs ja; —0, 8,0, b) =exp[—i | V(a,j)dt]. )

For the case j; = 1 equation (8) means a set of equations analogical to that occurring
in paper I (compare Eq. (30)). This would allow us to solve them with the numerical method
proposed in the first part of this work. On the other hand, the analysis made by us there
showed, that satisfactory results may be obtained in the so-called sudden approximation.
In this approximation one gets:

S(@tg, ja; — 0, +00, v, b) = {exp [—iPY”]), (10)

where ¢...> denotes the average over all possible orientations of atoms, and PV with
Jj. = 1 and j, = 3/2, according to (8), express the matrix elements of the interaction opera-
tor in the following way

P =P _ = _°f (V0 1)+3 [Vt 1) — V(02 1)] sin” B}dt,
Py = PU, = —4 | [V D=V, D] sin® s,
PR = T (Ve D[Vt D~V D] sin? Bl
PSRy = PO an = ] (V7 3043 [V 312~ V(e )] sin® Bl

(3/2) 32
PR = PO 12

°f V20, 312) 2 [V3(0 3/2)— V(s 3/2)] sin® B}t

(3/2 3/2) . p(3/2) (3/2)
P3//2 )—-1/2 = P(-—4/2,3/2 - P—3/2 1/2 = P1/2 ~3/2

. _in f [V 420t 112)= V(e 3120]dt, (1

where argument f is exactly defined in paper I (see Fig. 1 and 2). The other elements of
P and P2 | are equal to zero.

Ma,m g

Now, inserting the last expression into (10) and averaging over all possible orienta-
tions of the atoms we get

S(at,, 1; — 0, + 00,0, b) = 1—% exp (—iP§ly)—% cos (P ) exp (— iPy), 12)
S(“a’ %: — 0, + 0, 7, b) = 1—cos (F) CXp [_I(Pg:;/Zz.%/Z (13//22;/2)] (13)

with
I =[(P$2,— ﬁ%’bz) JA+ (PSR 112)" ]2 (14)
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After inserting the above expressions into (6) we finally get the diagonal elements of the
operator T.

In the next section we will evaluate the profile of the resonance line of sodium per-
turbed by argon for several values of pressure. However, the reorientation effects do not
play any role in this case, the analogical calculations may be carried out for other transi-
tions occurring in atomic spectroscopy.

4. Numerical calculation

To illustrate our theoretical considerations we have carried out the test calculations
for the resonance line of sodium perturbed by argon. For the transition under considera-
tion the interaction potential is isotropic for both states and hence the reorientation effect
does not influence the line profile in question. For the numerical calculations we have
assumed an interaction potential of the Lennard-Jones type )

Vi, j., R) = £ 6 (RPY" n [RING (15
aa’ as il 8m S DT N
/ n—6\ R n—6\ R )

with n = 12 (see Mahan [9]). We have to remember, however, that the Lennard-Jones
potentialsdoes not describe the interaction between two atoms accurately. Nevertheless,
the proceeding seems to be sufficiently justified as our calculations have in general a quali-
tative character. By taking this potential the calculations become considerably simplified.
The corresponding parameters R and ¢ for the 3P, ;2 state are taken from York et al.
[10], but the ones for the 35, state are taken from Pascale et al. [11]. Thus we put

e =549.16cm™", RY =324 =4358cm™!, RY =504 (16

The calculations were carried out separately for the very low pressure region and moderate
pressure region, in both cases for the temperature 7 = 300°K.

() Very low pressure region

Inserting Eq. (9)‘ into (7) and according to (6) we get that

d’(u, (:(a)’ o) = nnﬁ(Ri(:))z{_E[(u, C(a), a)___ irw(u, C(a), 0()] (17)
and
o . - ]
d(u, (9, ) = 2[(e+1)/x]"* [ dye™ | dze”@+D=
0 — o
X [y..].(u_}Z)Z]l/zd{g(a)/[y_,_(u_2)2]1/2}’
— & -
w(u, E(a)’ a) = 2[(0!-!— 1)/77.‘]1/2 j dye"y ." dze et 1)
0 -
X [y+(u_2)2]1/2w{c(a)/[y+(u_2)2]1/2}’ (18)
where

o =myimy, U= ky,/bm, {9 = PR/, (19)
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but the functions d{...} and w{...} with the 6-12 Lennard-Jones potential take the form

0

. = [Baxa iy s 8L
d(x) = ZJdQQ sin [—4—(9 5—%71;2 11):' 5
0 .

o

w(x) = 2Jd@g {1—-cos
0

i |
-5 e‘“)]}. 20)

In the case under consideration o = 1.76, { = 56.6 and (¥’ = 7.0.
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Fig. 1. The line profile obtained according to formula (21) at the pressure 0.154 torr

Insertingnow the functions ®(u, {“, o) for a = i and a = finto Eq. (5) and according
to (4) and (1) we obtain the following expression for the line profile in the Doppler limit

ROYRD(4+1)]"% N, 3 —
L(x) = [— —(—)] — f du exp [—(a+Du?] [yw(u, {0, @)

2mo i

— o ‘
+v“w' (u, {9, )]+ {[€+nu+Noyd(u, {9, 0)[2—Noy™ d(u, (P, 0)/2]

AN ywu, {9, @) +y " w(u, (9, 0177417, @n
where

2 () RUNL/2
No = tn(RPRYYY?, ¢ = (ke /M

y = RORY, 5= s(RORPY2. (22)
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Here y = 0.64, n = 4.26x 103 and & = 1.07x 10-7+0.129 [cm~']x. We note that condi-
tion (3) defining the Doppler-limit is satisfied below 6 torr. Fig. 1 presents the line profile
for p = 1.54 torr. 1t is shown that the profile is asymmetric and at the resonance frequency
w;; one observes a small dip. Similar profiles have been obtained for the pressures 3.105,

TABLE 1

Asymmetry coefﬁclent defined as a ratio of the red part of the half-width of the line to the violet one for
the very low pressure region

p [Torr] Asymmetry coefficient
3.105 1.8+0.2
1.54 1.5+0.2
1.0 1.3+0.2
0.5 1.1+0.1
0.154 1.0+0.1

1.54, 1.0, 0.5 and 0.154 torr. It is noticed that the observed asymmetry and depth of the dip
decreases when the pressure goes down from 3.105 to 0.5 torr and becomes negligible at
0.154 torr (see Table I). All the profiles obtained are narrower from the appropriate Voigt
profile.

(i) Moderate pressure region

At present we want to calculate the line profile of the same transition in the moderate
pressure region considered in detail in paper I. As was shown exactly in [3] the intensity
distribution of the line in the considered pressure region is given by the general function

IMx) = { 2 W(C)+Im(Y‘f)1/2 :
2n [x+an2d(C)+Re (Kf)1/2]2+ [#noR2 w(C)+Im (Ylf)llz]2

. rndRaw(£)~Im (§;))"/2 (23)
[x~— nnﬁRid—(z'—) —Re (Y'%)UZ]Z + [nnﬁR,f,;(?)— Im (?—i;)l/z]z} '

with
¥i7 = n?[(0u(00))* = (B1(00)) T+ hgie+ (o)’ 24)
The other quantities occurring here are defined in paper I. As was shown there the line

profile depends on the two functions d_(C) and @ taken at two different values of the
parameter {. In our case { = 0.54 and {’ = 0.255, and

d(0.54) = 1.2110,  w(0.54) = 0.9361, d(0.255) = 0.5584, w(0.255) = 0.6254 (25)
According to the condition

IV < noy(o0), (26)
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Fig. 2. Asymmetry coefficient defined as a ratio of the violet part of the half-width of the line to the red
part for the moderate pressure region

the moderate pressure region in the considered case lies above 150 torr Our results show
that the line profiles in this region are narrower.than the appropriate Voigt profiles and
display a red asymmetry decreasing gradually with increasing pressure. Fig. 2 shows the
asymmetry coefficient of the calculated profiles in the considered pressure region.

5. Summary and calculations

A’ method for calculating line profiles in the very low pressure rzgion, taking into
account both radiator velocity change due to collisions with perturbers and reorientation
of atoms, has been presented. As was shown, this method allows one to obtain relatively
simple expressions for a line profile in the case of anisotropic potentials. Owing to the lack
of corresponding potentials our test calculations could not be performed for other transi-
tions and for the system which would allow us to verify both the method presented here
and the method described by Ward et al. [2]. Nevertheless the calculated profiles indicate
clearly a departure from the appropriate Voigt profiles. They are much narrower than
the Voigt profiles and in general asymmetric. A little dip appearing at the resonance fre-
quency of the profiles in the very low pressure region could for example be a result of our
approximation. So far the higher terms of the expansion of the resolvent operator were
not examined by us. We believe that corresponding experiments able to verify the results
of our calculations will be performed in the future. It is also noticeable that we have obtained
a departure from the Voigt profile for the system for which the ratio of' a perturber mass
to a radiator mass lies much below the value at which this effect can be observed at all
according to Ward et al. [2].
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