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The system of itinerant electrons of a ferromagnet is described by a model of multiple
narrow bands. The intraatomic intra- and interband Coulomb interaction, the intraatomic
exchange interaction and the spin-orbit coupling of the itinerant electrons are taken into
account. An effective hamiltonian of magnons is introduced as an expansion of products
of magnon operators up to four-magnon terms. The relaxation times are calculated for
the three-magnon confluence and splitting processes due to the spin-orbit coupling and for
the four-magnon scattering processes due to electrostatic and spin-orbit interactions. The
wave-vector and temperature dependences of the relaxation times are computed for nickel
using a model band structure simulating the real one in the vicinity of the Fermi level. The
model structure takes the doubly degenerate bands in regions around I'L and I'X directions
into account and assumes a single band in the test of the volume of the Brillouin zone.

1. Introduction

The problem of magnon relaxation was extensively studied in the past decade (see
e.g. [1] and [2] for a review). The theory was developed on the basis of the Heisenberg
model, although in some cases the role of conduction electrons was also discussed in
terms of the s-d interaction model. It is of interest to study the magnon relaxation in itiner-
ant electron ferromagnets. The magnon relaxation due to the Coulomb and dipolar
interactions was studied recently [3-5] for a one-band. model of the itinerant electron
ferromagnets. In these papers the method of effective magnon hamiltonian [3, 4] was used
which is well suited to a systematic study of various scattering processes in the magnon
system. The effective magnon hamiltonian is constructed from products of electron oper-
ators which corresponds to the magnon creation and annihilation operators, it has a form

* Work supported by the Project MR-L.9 of the Polish Academy of Sciences.
*% Address: Instytut Fizyki Molekularnej PAN, Smoluchowskiego 17/19, 60-179 Poznati, Poland.

479



480

similar to the well-known boson representation of the spin hamiltonian of the Heisenberg
model. This analogy enables us to use directly some results derived earlier for the Heisen-
berg model.

The method of the effective magnon hamiltonian was generalized for the case of several
bands of itinerant electrons and the effect of spin-orbit coupling on the magnon energy
spectrum was studied ([6], hereafter quoted as I). At present we extend the results of I cal-
culating the three- and four-magnon interaction terms in the effective hamiltonian and we
use these terms to calculate the magnon relaxation times due to the spin-orbit interaction.
The present problem is pendant to the one of magnon relaxation due to the pseudo-dipolar
coupling of spins in the Heisenberg model [7] as the pseudo-dipolar forces represent the
effect of the spin-orbit coupling of magnetic electrons in localized electron systems [1].

2. Hamiltonian

In studying effects of the spin-orbit interaction in itinerant electron systems it is
compulsory to use the multiple band model. We start with a general hamiltonian with spin-
-orbit and electrostatic, Coulomb and exchange interactions, given by matrix elements
E™, and W(ty, t,; t4, t5), respectively
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t1...%4
al((a,s) are the creation (annihilation) operators for electrons of the wave-vector E
from the band ¢ and of the spin s, the Bloch energy is &,. Only intraatomic Coulomb and
exchange integrals W(t,, t,; t,, ;) are retained in (1).

As pointed out in [9], the band structure of ferromagnetic nickel in the neighbourhood
of the Fermi level can be approximately described in terms of a one-band model for nearly
the whole Brillouin zone except for some regions of small volume around the I'L and I'X
directions. In these regions, covering about 2-59% of the volume of the Brillouin zone as
estimated in [8], two bands have to be considered.

In our calculations we simulate the band structure of nickel in the neighbourhood of
the Fermi level by the following two-band model. Let the index ¢ = 1 label the Bloch states
which are of d-symmetry in the whole Brillouin zone, let ¢ = 2 correspond to states which
are of s-symmetry in nearly the whole Brillouin zone, except for regions of small volume
around the I'L and I'X directions where g,; = &,. Because of the low density of s-states
at the Fermi level we neglect the Bloch energy of s-electrons altogether. We keep only the
leading terms in the general hamiltonian (1), i.e. only the intraatomic intraband Coulomb
interaction I, the intraatomic interband (between the d-states) Coulomb U and exchange
J integrals are retained as well as the spin-orbit coupling elements E?, between d-states.
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The hamiltonian (1) for the above two-band model can be written as J# = #+ 4

where
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The summations Y in (3) extend only on the regions around I'L and I'X directions in which

the two d-bands are present. Since Y s contain only a small fraction of the volume of the

Brillouin zone we treat #’ as a perturbation.

3. Effective magnon hamiltonian

The basic idea of the present paper is to introduce the effective magnon hamiltonian
which describes the maghon interaction in the itinerant electron ferromagnets and -then
to study the magnon relaxation processes by the method of the kinetic equation, which is
well developed for similar problem in Heisenberg systems.

The treatment is based on the Randon Phase Approximation (RPA). We are interested
in low-energy acoustic magnons. Following paper I we define the creatlon operators for
acoustic magnons

= kz bt(q5 k)al.lc.+qt+akt—a (4)
T

where, for the two-band model as formulated in the Section 2,
bi(qs k) = dy(ey4q1—811+ 4, —E.?)"l,
1~ (I DK d
by(g, k) = S (3)
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Eg denotes the magnon energy unperturbed by the spin-orbit coupling. 4,(t = 1, 2) are
the exchange splitting parameters,
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and

K, = N7t ; nkt—(8k+qt~8kt+At_qu)——1' @)

s is the ground state expectation value of ala.s- We assume here a strong ferromagnetic
ground state. The normalization function d, is determined by the condition Y |b{gq, k)|?
-kt

n,— = 1 and whence the operators ﬁ,}' and their hermitian adjoint f, satisfy in RPA the
boson commutation rules.
The effective magnon hamiltonian has the form of a power expansion in terms of

Bt and B, (cf. [4)
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E, is the magnon energy including corrections due to the spin-orbit interaction. As calcula-
ted in I for long-wavelength magnons it has the form E, = E,+ Dq?, where E, is the gap
in the magnon spectrum due to the spin-orbit interaction and D is the spin wave stiffness
constant, only slightly influenced by the spin-orbit coupling.

The coefficients C, and Gj, determining the three- and four-magnon interactions
are given by:

Cog = 3 <O [Bargs [[#, BL1, BE11 16D, ®
Gl%k’) = % <d)l [ﬂk+q9 [ﬁk’—-q’ [[”’ /3}:']: ﬁ}:]]] I¢> (10)

The averages are taken with respect to the ground-state |¢> of the system of itinerant
electrons, determined by # = # o+#'.C,p and G}y are expressed in terms of ground-
-state average values of products of electron operators. These averages do not factorize
automatically, as it would be in the case of the absence of the spin-orbit interaction, be-
cause states with different spin and band indices undergo mixing. However, because the
spin-orbit coupling parameter ¢ is small, we can approximately factorize the averages as
in I. We put

{Plalistrsld = SuelSudsstiuss +1 ()], (11)

where the functions f are at least of the order of ¢.
The expressions for C, and G are
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and
Gl = L (GL+ Gl ¥ 1+ Gt ™V + G2, (14
Giy = Gl + Gy, (15)
with
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Note that C,, is proportional to 4, G, is proportional to £2 whereas G2, is of Coulomb
origin. ’

4. Correlation functions in the two-band model

The correlation functions <{a},.a,> are determined by equations (22) and (24) of
paper 1 ‘
Er
(alutyd =1 lim | dE[GA(E+ie)— Gi(E—ie)], (18)
0<e—=0 0
where GoAE) = @y ; alisyr are the one-electron Green functions determined by the
equations:

’ ¥ P ) 1
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The equations (19) are derived in the Hartree-Fock approximation. We assume that if the
spin-orbit interaction is neglected, the two d bands of the two-band model introduced in
Section 2 are degenerate in the regions around the I'L and I'X directions, i.e. 8iy = &1
within those regions, whereas ¢,, = 0 in the rest of the Brillouin zone. We assume also
strong ferromagnetism for the ground state. The Hartree-Fock energy in (19) is thus ey,
= &u+A40; 4, Where 4 = (4, +4,)/2.

The matrix elements E%, of the spin-orbit coupling are given in {10]; they are products
of the spin-orbit parameter ¢ and combinations of direction cosines of the magnetization
with respect to the crystal axis. The following relations are useful in solving the equations
(19) 1 Efy = —Ei,EY, = EY_, E%_ = —E™,. The solutions of (19) are (the Green
functions listed below are sufficient to calculate the needed correlation functions)

12

GLL(B) = = [(B~8,,) (=80~ £)—F] (200)
12
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—-EZ_
Yi(B) = —— [(E=6w)"—F], (200)
G‘—’_(E>———{(E 811) [(E— 81y —4)* ~ F]+4|EL |}, (20d)
61, (8) - ——{(E i) [(E—81) (E— &y — H)—F1+AIELI), (20¢)

where R = (E—&)) (E— &) (E—63) (E—6yy) and F = [EL% |24+ |E%% |2. The electron
energies split by the spin-orbit interaction are given by

Ei1s Gr2 = g1 +3 4(1—S3), @1
Ei3r Gia = 81 +3 A1+52), (22)
where
2 E12 12 E12 2\ T/2
Si=[1+4<il.A|+| ';2]““])] : (23)

Fig. 1. Band structure near the Ferrni level for the I'L and I'X directions, with exchange and spin-orbit
splitting

Now we use formula (18) to calculate the correlation functions. For &y, &xz < Er ie.
for the region 1 of Fig. 1 we have

- 1
I (S++S- )— — B2 (S+=50) |, (24a)
4S+
' E*2 1 2 ,
Kaby_op > = 35.5. [m (S+—S2)— —A*(S++S—):|, (24b)
Eiz_ .
Kafy—p14) = 2AS S —(S++8.), (240)

<alt1—ak1—-> = 1‘<al1z'1+ak1+>, <ak2+ak1 ) = '(a;fz—am—}- (244)
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whereas for &, < Eg < &, i.e. for the region 2 of Fig. 1

1 2|E% |
{afy 444> = 4—S—(S+_ Y 1) 5 (252)
+ .
EY2 /2  S,+1
S = — (- + ———) (25b)
iz ~Giy 45, \4 ' [EZ
E>
aby a1y = — , (25¢)
k2—Ok1+ 245,
E? /2 S.-1
datlanI = K(j = l_b%_z_—)’ (25d)
<aI1—-ak1-—> == —<a11'1‘+ak1.+>' (25¢e).

In Flg 1 in the region determined by &, > Eg, t = 1, ... 4 all correlation functions
vanish.

H

5. Matrix elements for the three- and four-magnon interaction

Having expressions for the correlation function we can calculate the three- and four-
-magnon matrix elements of the effective magnon hamiltonian. We shall calculate C,,
and G%. as an expansion of the wave-vectors retaining only the leading terms.

We apply the formulae (12)—(17) to the model of band structure of ferromagnetic
nickel, as described in the Secticn 2, with appropriate Bloch wave functions (see Section
7 of the paper I) being combinations of atomic d functions. In the presence of ferromagnet-
ic ordering the four directions I'L and the three directions I'X are no longer equivalent,
so matrix elements of spin-orbit interactions are different combinations of matrix elements
between five atomic d-type functions for different directions (see I, [9], [10]) and have
to be calculated separately. In expressions (13), (16) and (17) we expand the coefficients
bfg, k) in powers of the wave-vectors ¢ up to quadratic terms and retain only leading
contributions with respect to the small spin-orbit coupling parameter .

The summation over the occupied part of the Brillouin zone in formulae (13), (16) and
(17) is complicated because of the form of the correlation functions (21) and (22), which
are different in regions 1 and 2, as depicted in Fig. 1. For summation over region 2 of
Fig. 1, which is of small volume of the order of £3, we use the same estimate as in I. For
region 1 the following approximate Ansatz is used: the sum over wave-vectors from the
region 1, Z’(...) is replaced by Z’ (..)= yZ(...) where 7 is the fraction of the volume

of region 1 of the total volume of the Br1110u1n zone and Z( ) extends over all k from

the Brillouin zone. The value of the parameter y is estlmated (cf. [8]) as y & 0.02—0.05.
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We get the following approximate expressions for C,, and Gj,/:
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where we denoted (1+7y)n;, = n,—, for short.
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where

-1 Al Al
Ay = 14+(20J) [IOJ <—— —1> —2<l—y—> (I—J)],
4z , 4,
co A (A Y aca e 2 (2 )] -
Ay = I[(Az 1) 1-3y)+y 2( 5 1)] 1,

4.\ 4,
Ay = %[(Zl) +8 A—: +1]. (272)
2

oy, 0, &3 are the direction cosines of the magnetization with respect to the crystal axes,
n = N-1Y 5m,_ is the number of d holes per atom &, = C¢/d, where C = (2,/2—1)/2,/3.
k

We put P = 2(44/3n W sin kga)®/n where W is the band width, a is the lattice constant and
kg is the Fermi momentum determined from the Fermi energy Er by the approximate
relation Er = 3/4 W(l —cos?(kga/2))+ O(£). We denoted
5 o 0
7z =2 Cr1 08y i
N ok, 0Ok,
1/8k

where the summation extends over an octant of the Brillouin zone containing the direction
[111] as its symmetry axis. The following abbreviations were used

F(o) = (1—a3)” V¥ {as[2 ~ (1 — ad)] +iogap(0f —ad)}, (282)

Fi(o) = —(1—a3)"*{doy 05+ i(a3 —a2)}, (28b)

(o) = (1—a3) V{20 0,05(1 ~d03) — i} —a3) (1 +243)}, (28¢c)

Fy(o) = (1—02) 2{0, [1— a2 —02(1 — 4a2)] + fop0t5(e2 + 362)}, (28d)

Fo(e) = (1—0a3)” *{a,[4a3(1 = 205) — (1 —2eD)] — iop05[3(0} —03) —3]}.  (28e)
Fa(o)) = (1—a3)” " {o,[1 ~ o — af(1 — 4ad)] —der, o503 + 3a2)}. (28f)

Fiy(w) = (1~03)” *{o,[4af(1 - 203) — (1= 203)] — iwyos[3(af —a3) +03]},  (28g)
Ir= ocfa§+oc§a§+cx§a§. 29
g=1+3—é—5—3§§r(1—6—(1:4)—g%, (30)

and

A 2 - -, - > ’ ; - - =,
Hlxixj i (1 + (LT:) ) [6(k +k )xi(k +k )XJ - z(kx;kxj + kxgkxj) + qx;(k'l' q— k )xj

L]

e 4\*> 4 o P
+4.(k+q—k)]—% (7 { _1> —8t 4 7) (k+ k) (k+ Kz, (32)
\AZ AZ

where x;, x; = x, ), z.
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For computing C,, and Gj it is convenient to use the function M(E), introduced in [11]

M(E) = 50/@2n)° | |Velds, (33)

=

where the integration extends over the surface of constant energy g, = E and v is the vol-
ume of the elementary cell: The sums in (26) and (27) can be expressed in terms of M(E):

5
5 Z n,_VZ, = M(Eg), (34a)
k
Ex
5 .
¥ Z n,-|Ve)? = f M(E)dE. (34b)
k ‘0

The anisotropy of magnon relaxation times is not very pronounced, therefore for
reasons of simplicity we shall confine the subsequent discussion to the special case of
magnetization direction parallel to the z-axis, i.e. a; = a, = 0, a3 = 1. For that case
the expressions (26) and (27) are simplified considerably,

Coy = {i(C1+C)) [0+ a:~(a,+ )] - Colax+ ax¥q, + )} (g +42),  (35)

Gl = Go+G (K2 +K'H+ Gk - K +Gs[q - (k—K)+4¢%], (36)
where
Cy = 164,(2nN)""?A(nd})™"Z¢4, (37a)
C, = A,PQnN)" > A(W sin kpa/164,)*&, (37b)
Go'= —y(nlN) " 4gél, (382)
Er
Gy = (3n4]) '[AIM(Ep)+ 45 (A3 + 45) | M(E)AE]G,, (38b)
0
Eg
1—
G, = (3nd?)™1 |:2A’360+ —57\]21] j M(E)dE, (38c)
o
Erp
G3 = (3n4})'[A34,M(E)+ 43 | M(E)dE]Go. (38d)
0

6. Three-magnon relaxation processes

The effective magnon hamiltonian is convenient for studying separately various
magnon relaxation mechanisms. The second term of the effective magnon hamiltonian
describes two types of three-magnon processes. In the 3-magnon confluence process a given
magnon k disappears with another magnon ¢ to produce a third magnon g’ whose wave-
-vector is g’ = k+gq. In the 3-magnon splitting process’a given magnon k disappears to
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produce two other magnons, say ¢ and q', whose wave-vectors satisfy the condition (_i +Ej’
= k. Because of the energy conservation requirement the splitting processes are allowed
only if the magnon wave-vector exceeds some critical value k. determined by the condi-
tion k2 = Eo/D, where E, and D are the gap in magnon energy spectrum and spin-wave
stiffness constant, respectively. For k < k, only the confluence processes are effective in
relaxing magnon k. Using the standard kinetic-equation approach developed in the tradi-
tional spin-wave theory we obtain the following expressions for the inverse relaxation times
(see, e.g. [1])
1 2= =
-‘FE =5 4 Cp gl “(Ng~ Ny )0(Eg+E,— Ey ) 39
' g
for the 3-magnon confluence process and
1 v o L .
= =5 Z 4Cpp— gl (Ng+ Ny g+ 1)0(E,—~E, — E;._ ) (40)
q

for the 3-magnon splitting process, where N, = (exp (E,/ksT)~ 1)~" is the equilibrium value
of the occupation number of magnons of energy E,.

6.1. Three-magnon confluence processes

. For simplicity we calculate the relaxation time for. magnons propagating along the
z-axis, i.e. for k = (0,0, k). The summation in (39) is replaced by integration in the
usual way. It is convenient to introduce spherical coordinates g, = gsin9 cos ¢,
g, =gsin 3 Si‘{l ®, g, = g cos 9. The angular integrations are easily performed using the rela-
tion 6(Ey+E;—Ey,,) = (2Dkq)*5(d/2kq—cos 9), where we use the dispersion relation
E, = Ey+Dg” and we put d = E,/D. Integration over the Brillouin zone is approximated
by integration over a sphere with radius R (defined by the condition 47R3/3 = volume of
the Brillouin zone). For low temperatures the errors involved are negligible because of the
Bose factors. In order to get an expression convenient for computations we perform
a change of the variable g into u = E;/kyT+ (D/kgT)q?. The final formula for the 3-magnon
confluence relaxation time is

1/2§ = Q(kgT|D)? % (k+d[2k)*(e’ ~1)6(R — d/2k)

x | dulu—(pT/D) (d+d*/AD)] [(1—e ™) (1)) (41)
The following notation was used
Q = V[(C,+C,)*+C3]2hDr, y = (Eo+Dk?)/kyT,
uy = (Eo/kpT) (1+dj4k?); u, = (Eo/ksT) (1+d 'R, (42)

where V' is the volume of the sample. 6(x) is the step function.
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6.2. Three-magnon splitting processes

Momentum and energy conservation laws in (40) lead to the following conditions
d+q =k and k- g = g>+d/2, so the coefficient |Cye|? can be replaced by

|Copl® = K2[(Cy+ Co)(ky— k)2 + Co(k,+ k)]

Using similar procedure as for the confluence process we obtain the formula for the in-
verse relaxation time due to the 3-magnon splitting process:

1 2 2 2 2 2 2
== VigT[(4nhD*k)kZ[(C1+ Co) (k= k)" + Calks +ky)]

-

k
x(@~1) § dul(e'~ D@ =017 43)

where
uy = (DfksT) {d+1/2[k(k—(k*~2d)""*)~d]},

u, = (D[kgT) {d+1/2[k(k+ (K> —2d)"/*)—d]}. 44)

If we average (43) over directions of k, the expression for 1/z = (1/4x) dek/rE is

ug

_11? = (1/15) (Q/D)ks TK> (¢’ — 1)0(k—2d) J du[(e"—1D) (@7 =1] " (45)
k

As we see, the 3-magnon splitting processes become effective if the wave-vector k
exceeds the critical value given by k2 = 2d. Olkhov and Lutovinov [12] pointed out that
the kinetic equation for 3-magnon confluence processes is valid only above some critical
wave-vector. For values smaller than the critical, the behaviour of the spif-wave system
is not completely determined by one-particle distribution function, i.e., the correlation
effects of spin waves should not be neglected. The interaction part of the magnon hamilto-
nian cause transitions between states and magnon correlations do not damp at all when
k — 0, but oscillate with the constant frequency E,/h. This means that in order to determine
the magnon relaxation time we have to consider renormalization of 3-magnon relaxation
by 4-magnon processes.

7. Four-magnon relaxation processes

The only 4-magnon scattering processes in the effective hamiltonian (8) for the system
with spin-orbit interaction are the two-in and two-out ones determined by terms proportio-
nal to G%.. (In the chse of systems with magnetic dipolar interaction of itinerant electrons
also the 4-magnon one-in and three-out processes are possible, as shown in [4].) Applying
formula (22) of paper [5] we have the following expression for the inverse relaxation time
due to 4-magnon processes: '

1 16n . S s e
e G- N gy gt (N gt Ny + ) =N N }0(E+ By g -~ E,—Eg). (46)

’

a9
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The inverse relaxation time for magnons‘l—c», averaged over directions of k, is
Ay = (1/4n) | dQfr>? = 4V°[[(2n)°hD]
x | dq | dq'fuBE,, BE,) (Kla+q')™*
x{Go+Gu(a" +4°)+Gag * ¢ }0[K°¢* +K*q*—k*~(q - 47, (47)
where
SABE,, BEy) = (exp [B(E,+E,—E)]—1)""[(exp (BE)—-1)""
+(exp (BE;)—1)"" + 1]~ ([exp (BE))—1] [exp (BEp)—1])™* . 49

and B = 1/kgT. We introduce spherical coordinates in k and ¥’ spaces and integrate over
a éphere of radius R, of the volume equal to the volume of the Brillouin zone. Having
performed the angular integrations in (47) it is convenient to introduce new variables:
x = pD(q*+q'%), y = BD(q'*—q?) and we get finally

x

2/¢
APy = B0 | e [ dyfi 3) 4F ) [(Got Gt
4 o ‘

—(2/3)Gtx(Go + G2x)+(1/5)G583(z(x — 2) +(2/3)xD)]
+(2/3)GtF 1 (x) [2(x—z)]" 2(Go+Gltx—(1/5)Gti)'} 49)

where ¢ = kgT/D is a reduced temperature, z = Dk*/kyT, B = V?/(2(2n)*hD), and the
abbreviations are used

Fu(x) = {(x+2[2(x—2)]"2}2 £ {x 2L z(s— )]} 2.
The function f(x, y) corresponds to (48), its explicit expression in the new variables is
fox, y) = [exp (e+x—2)—1]" {(exp [e+3 (x—»)]-1)"*
+(exp [e+5 (x+1)]=1)7" +1} —[(exp [e+3 (x—»)]—1) (exp [e+1 (x+ )] - D] *

(48)
where & = Ey/kgT.
In the limit £ — 0 formula (49) gives
) R2/t x
1fe?y = 2B¢ (f) dx | dyfo(x, ) (Go+ G, tx)>? (50»
0

so the 4-magnon relaxation time is finite for & = 0. This is due to the spin-orbit interaction,
the coefficients G, and G, are proportional to the spin-orbit coupling parameter ¢2. For
a finite wave vector k the 4-magnon relaxation is a result of interplay of two mechanisms,
the spin-orbit and the Coulomb interaction, as the coefficient G, is approximately propor-
tional to the Coulomb integral I. With increasing k the Coulomb interaction begins to
dominate and for large enough k the 4-magnon relaxation is predominantly of Coulomb
origin.
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8. Numerical results for nickel

The aim of the present paper is to study magnon relaxation due to the spin-orbit
coupling in itinerant electron ferromagnets. The approach based on the effective magnon
hamiltonian is quite general and can be applied to any magnetic systems of itinerant
electrons. The method is applied to nickel which is a typical itinerant electron ferromagnet.
The real band structure of nickel is approximated by the model being a modification of the
model of Mori et al. [9] and the one used in I. In this model we take into account the exis-
tence of two bands (split due to the spin—orbit interaction) in small volume regions around
I'L and I'X directions and we assume a single band elsewhere in the Brillouin zone. The
band structure of ferromagnetic nickel [13] in the vicinity of the Fermi energy is sufficiently
well simulated by this model. The following values of parameters for nickel are taken:
the number of d-holes n = 0.6, the exchange splitting 4 = 0.56 eV [14], the spin-orbit
parameter ¢ = 0.12 eV [14]. We assume the exchange parameter J = 0.1 ¢V and whence
we determine the Coulomb integral I from given values of 4 and ni.e. from A = n(l+J)/2,
as I = 1.8 eV. The band-width parameter for d-holes is taken as W = 1 eV, in accordance
with the calculated band structure [13]. The ratio of the bandwidth W to the Fermi energy

.
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Fig. 2. The inverse relaxation time for 3-magnon confluence processes versus wave-vector, for various
temperatures '
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E; is computed from the relation n = N-'} 5m,_ where obviously 7, = O(Er—&y)-
k

o EFr )
For the value Ex = 0.49 W, determined in this way, we have M(Eg) = 0.13 Wa?, | M(E)dE
o]

= 0.03W2a2 and Z = 7x10-*W?2a2, where a is the lattice constant. For the parameter
y determining the fraction of the volume of the Brillouin zone with double-degenerate
energy levels we take y = 0.03, in accordance with [8]. For these parameters the gap E,
in the magnon spectrum is roughly 0.7 meV. For the spin-wave stiffness constant D we
take the experimental value Da~? = 0.04 ¢V, [15].

The results of computations of the relaxation times for various mechanisms are presen-
ted in Figs 2-9. For a very small wave-vector %, as is seen from Fig. 2, the inverse relaxation
time for the 3-magnon confluence processes is roughly proportional to k and, since we
neglected here the effect described in [12], vanishes in the limit & — 0. For small wave-

s ) k
1 2 3 4 5 6

4
10+
0

Fig. 6. Thetotal inverse relaxation time for 3-magnon processes, 1 [ty + 1]z, versus k (curves a), compared
with the dominant contribution from confluence processes (curves b). i

-vectors, say k < 0.1 (the wave-vector is measured in units of the inverse lattice constant),
the wave-vector dependence of 1/1; is similar to the one due to dipolar interaction (cf. [3]).
For larger k, 1/7; increases with increasing k, so the spin-orbit relaxation mechanism begins
to dominate over the dipolar one. _

The temperature dependence of the 3-maghon confluence relaxation time for different
wave-vector is illustrated in Figs 3. '

The 3-magnon splitting processes are effective above the critical wave-vector:
k. = (Eo/D)? = 0.059. The inverse relaxation time 1 /ti, due to these processes, is depicted
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in Fig. 4. The temperature dependence of the 3-magnon splitting relaxation time is presen-
ted in Fig. 5 for several values of the wave-vector. For a given wave-vector and temperature
the inverse relaxation time for the splitting processes is much smaller than for the con-
fluence ones, the contribution of the splitting processes to the 3-magnon inverse relaxation
time is negligible for all but large wave-vectors as shown in Fig. 6.

The dependence of the 4-magnon relaxation time on wave-vector is illustrated in Fig, 7.
The inverse relaxation time is finite for £ = 0. The large values of {1/z{*'®) for large k
account for strong interaction of short-wavelengths magnons due to the Coulomb cou-
pling. The temperature dependence of (1/z{>*®)y is shown in Fig. 8.

The total inverse relaxation time 1/7;, = 1/t5+1/7;+<1/1{>**) for the 3- and 4-magnon
Processes versus wave-vector k is plotted in Fig. 9. The peak for low & results from 3-mag-
non confluence processes.

1

1 1 1
LS. ) et g /e
of 5 T TR <1:,(‘2-2’>

105 g o " ’ —3 e—k#-_-
1 2 3 4 .5 6

°

Fig. 9. The dependence of the total relaxation time, ifry = 13 +1jz;+ {1fz}:*> for 3- and 4-magnon
processes on the wave-vector, for several temperatures

In estimating the numerical accuracy of the numbers obtained for the inverse relaxa-
tion time we have to remember that, apart from the fact that real band structure of nickel
is approximated by a model one, the final results depend upon several parameters, notably
¢ and y, which can be determined only with rather low accuracy.

>
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The qualitative aspects of the wave-vector and temperature dependence of the relaxa-
‘tion due to the spin-orbit interaction in itinerant electron ferromagnets are similar to the
ones of the relaxation by pseudo-dipolar forces in the Heisenberg type ferromagnets, as
discussed in [7], [1] and [2].
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