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LOCALLY INHOMOGENEOUS HARD-SPHERE FLUID:
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An inhomogeneous fluid with local density of the form: n(r) = {1+ fdk A(k) cos (k - )},
¢ being the average macroscopic density, is discussed. The amplitude 4(k) is assumed to
‘be independent of the direction of the wavevector k. Hence, only the local inhomogeneities
of the fluctuation type are considered. The solution of the Ornstein~Zernike equation is
constructed by means of the generalization of the Baxter method. Detailed calculations are
performed for the hard-sphere system with one-mode inhomogeneity, A(k) ~ 6(k— ko).
It is found that the presence of inhomogeneities strongly affects the equilibrium properties
of the fluid. In particular, the hard-sphere fluid becomes macroscopically less compressible
than the homogeneous one. ' '

1. Introduction

Statistical-mechanical calculations of the properties of non-uniform systems so far
have been devoted mainly to the gas-liquid or fluid-wall interfaces (cf. e.g. [1-3] and refer-
ences cited there), i.e., to the directed inhomogeneities connected with some externally
imposed order. In this paper we will discuss the properties of a fluid with local density
nonuniformities of the kind characteristic for spontaneous fluctuations. More specifically,
we assume that the local density (one-particle distribution function) n(r) can be written
in the form:

. n(r) = {1+ [ dkA(k) cos (k - r)}, a.n
with amplitudes 4(k) independent of the directions of wavevectors k, and with ¢ being the
average (global) density:

Vo ! [ dra(r) = o, (1.2)

Vo
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where ¥, is some finite volume of the fluid. We shall seek the generalization for the inhomo-
geneous system of the Baxter solution [4] of the Ornstein-Zernike equation. The latter
reads:

h(ry, rg) = c(rq, v2)+ jd"sh("l» ra)n(r3)e(rs, ra), 1.3
where A(r,, r;) = g(ry, r;)—1, and g and c¢ denote the two-particle radial and direct

correlation functions, respectively. We shall discuss globally umform ﬂuld Wlth no externally
imposed direction so that globally:

h(ry, "2) = h(riy),  c(r, r) = c(ryz),  Fi2=| ';1‘;"2 |, 14
and locally these functions will depend on the actual position only through the local den-

sity n(r).
As an application of the general method, the solution of the Percus—Yevick equation
for the nonuniform hard-sphere fluid will be discussed. ;

2. Rearrangement of the Ornstein-Zernike equation

We shall follow the Baxter method [4] of the solution of the (hdmogeneous) Ornstein—
—Zernike equation. Hence, we assume the interparticle potential and the closure relation
additional to the Ornstein—Zernike equation to be such that the direct correlation function
c(r) is of finite range: '

cry=0 for r>a.. 2.1

With the assumptions (1.4), the Ornstein-Zernike equation is: '
hr) = c(r)+ § dsh(n(s+R) (| r—s ). 2.2)

Let B(q) denote the three-dimensional Fourier transform of b(r):

b(g) = J‘drefq- rb(?‘) =-iqf J- drrb(r) sin (qr),‘

b) = @) que‘i“'”lxq)=(2n2r)f‘:quq5(q) sin (gr). 2.3)

Introduce also functions B(r) and B(g), defined by

By = | dib(s) = s { daba) s an),
B(q) = 4n Tdrb(r) cos (qr) = }, dkkb(k), 2.4)
V] q
b(q) = 4n of dr cos (qr)B(r),

b(ry = 27%)7" of dq cos (qr)B(q). N )
[¢]
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The Fourier transform of Eq. (2:1) is:
 iq) = )+ oh(g)lélg)+ Dig: R, (2.62)
— Hg)+ 0e(@h(e)+ Gla; B, (2.6b)
where
D(q; R) = ¥ dkA(k)e™ Re(lq+kl)+e™™ "c(lq—Kl)

-5 f aka(k; B [Clla—KD—Cla+R), @72)
and similarly O
G(a; R) = % f dk(k; R) ..[ff:(lq—ki)~ﬁ(q+k)], (2.7b)
with 0
&(k, R) = dnkA(k) cos (k » R). (2.70)

Multiplying Eq. (2.6a) by ¢, adding to both sides the term I—Qﬁ, and r_eggouping,
we get: . )

[1+eh(g)] [1- 0t(g)— 0D(g; R)] = 1—oD(q; R). (2.82)
Adding only 1, we can get another form of the above relation:
[L+oh(@)] [1—g)] = 14 0e(9)eG(g; R). (2.8b)

Eqgs. (2.8) show that the well-known simple relation between the isothermal compressibility
Ky and ¢(0) does not hold in-the presence of inhomogeneities. Indeed, the relation

;] R .
_kBT'(-—Q> = Ky = 14+ 9h(0) 2.9
op/r
(p — pressure, T — temperature, ks — Boltzmann co__nstant) implies now that
= 1: QD(O;AR) _ 1+QC(0)€G(0; R) 2.10)
1—0c(0)—oD(0; R) 1—0c(0)

i.e., the isothermal compressibility is now connected not only with the value of the Fourier
transform of the direct correlation function at ¢ = 0, but also with its values at nonzero
wavenumbers.

Because the right-hand sides (rhs) of Egs. (2.8) are now functions of ¢, we cannot
use the original Baxter’s argument that rhs is never equal to zero, and hence expressions
in both brackets of the lhs of these equations separately always have a constant sign, which
in turn permits us to introduce a new function (g) with appropriate properties. We
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must then proceed in a slightly different manner. Multiply both sides of Eq. (2.6b) by ¢ and
by some new function E(q), and add a constant K > 0, such that

Eoh = 1+ gh+oG—K. (2.11)

After rearrangements, we now get:
[t —E(g)ec(@)] [1 + 0h(g)+ 0G(g; R)] = K > 0. 2.12)

Because ﬁ(q): finite, V ¢ € R, hence
1-E(g)ec(g) # 0, VgeR (2.13)

and now we can repeat Baxter’s arguments: relation (2.13) implies that there exists some
function Q(q) : VqeC,

0] 0i(q)E(g) = 1-0(@)0(—9),
(i) 0(0) > 0, (2.14)
(i) 0@)=0 for Img;<0,
(iv) 0(q) = 1-2ng j dre'7Q(r), Y reR.
[1]

The last relation defines the function O(r) for r € (0, a’). This définition is completed by:
Q@) =0, Q) =0 for r outside (0, a’). (2.14a)

We shall prove below that @’ = g, i.e., that the range of Q(r) is equal to the range of the
direct correlation function.
From Egs. (2.12) and (2.14) we have:
0(g) 1+ oh(g)+¢Glg; B = KIO(~ ). 219

Multiplying the above relation by e~ r >0, and integrating over ¢ along the whole
real axis, we shall get the ths equal to zero: The contour on the rhs can be closed in the

lower half-plane, where O(—¢) has no zeros, K[O(— )T is regular, and e~ vanishes
on the lower great half-circle for r > 0. Integration of the lhs thus gives:
~Q(r)+H(r)—2neo | diQ)H(r—t)+4(r;R) =0, r>0 (2.16)
]
with
A(r; R) = F(r; R)—2mg | diQ()F(Ir—1|; R), | (2.17)
. e

+
F(r;R) = 2r)"2 | dge™G(q; R)

= 2% f dk¢(k; R) j dsh(s) J dqq~te™"{cos (qgs—ks)—cos (gs+ks)}.  (2.18)
i - 0 0 — o
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Hence,

o

0
S R = - fdi«p(k; R)sin (kr)h(r), r>0 (2.19)
0
and the differentiation of Eq. (2.16) with respect to r leads to the relation between h(r)
and Q(@):
p(E)h(r) = —Q'(r)+2ne 6[ aQyy(r—vh(r—t)), r>0, (2.20)
where

W) = r+ ofqub(k; R) sin (k7), ' (2.21)
[}

and Q'(r) = dQ(r)/or.
The relation between c(r) and Q(r) can be found from Eq. (2.14). To this end, the

function £(g) must be eliminated. Multiply Eq. (2.14) and Eq. (2.11) by e~*" and integrate
over g, for r > 0. The result is:

2n (j) dsC(s)M(r, 5) = Q(r)—2mg aj atQ(HQ(t—r), (2.22)
0
2n l_‘[ dsH(s)M(r, s) = H(r)+ cf dko(k; R) Oj? dsh(s) 2n)~*
0 o 0

+ o0
x [ dge™q~'{cos (gs—ks)—cos (gs+ks)}, r>0, (2.23)

where the upper limits on the integrals in left- and right-hand sides of Eq. (2.22) result
from (2.1) and (2.14), respectively, and where M(r,s) = E(jr—s|)+E(r+s), E(r) being
the inverse Fourier transform of E(g). The integral over s in the rhs of Eq. (2.23) can be
written in the form (lim A(r) = 0):

0
I= fdsh(s)sN(q, k;s) = J‘dsH(s)g—N(q, k;s),
s
0 ]

N(g, k; 5) = s~ {cos (gs—ks)—cos (gs+ks)},
so that Eq. (2.23) can be cast into the form:
{ dsH(s)W (s, r) = 0, (2.24)
V]
with
w +

W(s, ¥) = 2aM(r, s)—6(r—s)— z—l—n J' dkp(k; R) J dqe"i“'a—i N(g, k; s). (2.25)
0 -—

[eo]
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Eq. (2.24) must be fulfilled for every r e (0, c0), which implies
W(s,r) =0  for all. . (r,s)e (0, 0). (2.26)

Introducing relations (2. 26) and (2.25) into (2.22), differentiating with respect to r, and
integrating over g and over s, we get the desired relation between c(r) and Q(r):

p(P)e(r) = —Q'(r)+2ne ‘_1[ ar@'(nQ(t—r), r=>0. 2.27)

Incidentally, because ¢(r) = 0 for r > a, Eq. (2.27) proves that also Q'(r) = 0 for r > a.
This means that, without the loss of generality, we can put a’ = g, so that also Q(r) = 0
for r > a.

The function D appearing in the relations between c¢(g) and h(g), and in the formulas
for the isothermal compressibility, and given by Eq. (2.7), can be now cast into the form
which will be more convenient in further calculations. We have from Eqs (.7) and (2.3)-
-(2.5): -

@

D(g;R) = %ﬂ f dk¢(k; R) f drc(r) sin (gr) sin (kr),
0

[4)

so that, from Eq. (2.20):

E(q)+ﬁ(q; R) = ﬁ((j; R) = %J‘dr[w(r)c(r)] sin (gr), (2.28)
0
and
Kr = 1+ 06(0)/[1—ep(0; B)], N (2.29)
h(g) = &q)/l1 - ofi(g; B)]. (2.30)

3. Hard-sphere fluid in the Percus—Yevick approximatiou
For the hard-sphere fluid we have

Wr)y = =1, for r<o, 3.D
.¢ being the particle diameter, and the Percus—Yevick approximation means in this case

that the cut-off @ of the relation (2.1) is now equal to o. In the foregoing we put, for
simplicity, ¢ = @ = 1. Relations (2.20) and (3.1) determine the function Q'(r):

Q'(r) = ar+p+ }, dkk(k) [L(K) cos (kr)—&(k) sin (kr)], (3.2)
) _
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with ) _ e
a = 1-2mp [dtQ(r), B = 2mg | duQ(¥),
0 o]
1 . 1
¢(k) = 2—7;—9 f dtQ(t) sin (kt),  &(k) = 3’}2—9 f drQ(f) cos (kf) (3.3)
0 0 ’ g
and

Q(r) = a(r* ~1)+pr—1)+ of dke(k) {{(k) [sin (kr)—sin k]
Aol |

+¢(k) [cos (kr)— cos k1}. (3.4)

Inserting Eq. (3.4) into definitions (3.3) and performing integrations we get the set of two
linear algebraic and two linear integral equations for unknowns a, B, {(k), and E(k), which
can be solved numerically by standard methods. The explicit form of the direct correlation
function may be obtained by inserting Eqgs. (3.2)-(3.4) into Eq. (2.27) and performing
integrations. Subsequently, fi(g) can be calculated analytically. All these calculations are
tedious and the resulting formulae are rather lengthy. Moreover, the function ¢(g) must
be calculated numerically, after the evaluation of numerical values of the coefficients
o€, For this purpose, the detailed form of the amplitude 4(k) must be first specified. We
are thus not presenting all formulae for the general case. Instead, in the next Section
we shall discuss in detail the simplest special case of one-mode inhomogeneity, assuming

the amplitude to be:
Ak) = (4nk(2,)_1A05(k—k0). (3.5)
In this case,
O(r) = Qo+ pr+3ar?+yk=" cos (kr)+ek=* sin (kr) 3.6)
(for simplicity, we drop out the index 0 from ko), with:
Qo = —3a—f—~yk! cos k—sek~? sin k,

y = 2n06 } d1Q(t) cos (kt), & = 2nod f d1Q(1) sin (kt). (3.7)

Now, the insertion of Eq. (3.6) into definitions of the coefficients o-¢ leads to the set of
four linear inhomogeneous algebraic equations, the solution of which is trivial (coefficients
of these equations are listed in the Appendix). Insertion of Eq. (3.6) into Eq. (2.27) gives
the explicit formula for the direct correlation function:

Y(M)e(r) = cotesrtcyr®+eur*+ e sin (kr)+c, cos (kr)+c¢,r sin (kr), (3.8)
wr) = r+¢sinkr), ¢ = Pk, R)=Fk"Acos(k'R) 3.9

(coefficients ¢, ... ¢, are listed in the Appendix). Calculation of the function i(q) from
Egs. (3.8) and (2.28) is again trivial; however, the functigm ¢(g) still must be computed
numerically, after determining the values of the coefficients a—z.
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Tt should be remarked that previously Hutchinson [5], in the critique of Tem-
perley’s proposition [6] argued that the direct correlation function cannot contain terms
proportional to trigonometric functions, like (3.8). Hutchinson’s arguments state that
such terms mean that 1 —c(g) = O for some values of ¢ = g; (¢; real). Now, the relation

1+ 0h(g) = [1—oc(@I™ (3.10)

*
implies that in this case either 1+Qﬁ(q) has double roots at the real axis at g = ¢;, or
h(g)) = oo, which implies in turn that the radial distribution function g(r) would become
divergent. Now, Eq. (3.10) is valid for a homogeneous fluid only. In the presence of inhomo-
geneities it is replaced by one of Egs. (2.8), and Hutchinson’s arguments cease to hold.

4. Hard-sphere fluid with one-mode inhomogeneity

Numerical computations need as input the values of three parameters: density ¢, ampli-
tude 4, and wavevector k. The values of these parameters are limited by the following
obvious inequalities:

0 < ¢(r) < Cmaxs
ie.,
0 < 1+¢sin(kP)/r < Qmax/0s 4.1)

0max being the close-packing density. Because the inequalities (4.1) must hold for all , we
have

—1 < k¢ < (Qmax—0)/e- “4.2)
Because ¢ = A cos (k - R)/k, and again (4.2) must hold for all R, we have also

|4l <1, and |4] < (eux—0)le 4.3)

and because |k¢| < [4], inequalities (4.3) hold also for k¢. Tt is worth mentioning that
the above conditions also ensure that () > 0 (cf. Eq. (3.9)), which in turn guarantees
finiteness of ¢(r) (cf. Eq. (3.8)) and hence of ¢(g), and the latter property is necessary for
condition (2.13) to be fulfilled.

Figures 1-3 show the direct correlation functions for a few values of density, wave-
number, and local amplitude k¢, in comparison with ¢(r) calculated for uniform hard
spheres of the same mean density. For convenience, the curves are labelled by the con-
ventional dimensionless density # = mea®/6, and by the wavelength A = 2n/k rather than
by ¢ and k. Direct correlation functions were subsequently integrated numerically to
¢(0), and the compressibility Ky was calculated. The local values of the pressure P (local
compressibility equation of state) was obtained by the numerical integration of Ky ! as the
function of density. Local pressure is shown in Fig. 4 for a few values of A and k¢ (dashed
lines), as compared with the uniform compressibility equation of state (dot-dashed line).
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Fig. 1. Direct correlation function of non-uniform hard-sphere fluid. 1 = 4a, 7 = 0.03. The numbers
labelling different curves denote values of the effective (focal) amplitude kg = A4 cos (k Rk =0
corresponds to the uniform fluid

clr)

-%0 4

Fig. 2. Direct correlation function of non-uniform bard-sphere fluid. k4 = 0.9, = 0.03. The numbers
labelling different curves denote values of the wavelength 4 in units of the particle diameter. The dashed
line denotes «(r) for homogeneous fluid
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Fig. 3. The same as in Fig. 2, for # = 0.3
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Fig. 4. Compressibility equation of state of inhomogeneous fluid of hard spheres: (P/ekpT) vs. density.
Dot-dashed line, curve. I — homogeneous fluid. Dashed lines: local pressure. Curve 2 — A = 1, kg =
=Acos(k-R) =09;3—24=5k=09;,4— A =5, ké = —0.3. Full lines: global pressure calcula-
ted from averaged compressibility. Curve 5 — 4 =35, 4 =0.18; 6 — A=5 4=09
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Usually we are interested in global rather than in local properties of an inhomogeneous
system, especially when the inhomogeneity range is of the order of a few molecular diam-
eters. Hence, the local values of Ky were averaged over R, over the volume ¥V, defined
by the condition (1.3), which for A(k) from Eq. (3.5) gives:

Ro
47
f drcos(k-r) = % f dRR sin (kR) =

Vo 0
i.e., the volume V, is a sphere of radius Ro, determined by the solution of the equation
sin (kRo)—kR, cos (kR,) = 0. 4.4
First nonzero solution appears at

Ro = 0.715148 ... 2n/K). 4.5)

The averaging proceeds now as follows: K is a function of R through its dependence on
k¢ = A cos (k- R). Consider a function f(A4 cos (k - R)). Its average over R is:

= fi— J dRf(A cos (k - R))

0
Vo

and it is easy to find that the above three-dimensional integral can be reduced to the single
one:

X0

f= 5;37 f dx(xz—x*)f(Acos x), Xo = kR,. (4.6)
0

The average (global) value K; was thus computed by numerical integration of local Ky
considered as the function of k¢ = 4 cos (kR,), according to the formula (4.6). Global
equation of state was obtained again by the numerical integration of (K7)~!. The resulting
values of the global pressure are also shown in Fig. 4 (full lines). The averaging of Ky
seems to be more proper than the direct averaging of pressure, because it means the
averaging over fluctuation in density, the magnitude of which, as is well-known, is directly
connected with the value of the isothermal compressibility. The earlier averaging of c(r),
or the later averaging of P 1tself lead to slightly different results for the compressibility
equation of state.

The above results show that the presence of the fluctuation-like local inhomogeneities
influences the equilibrium properties of a flnid rather strongly. In particular, the fluid, at
least that of hard spheres, is macroscopically stiffer, less compressible: The average pressure
is higher and the isothermal compre551b111ty is lower than in the absence of density fluctua-
tions.
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APPENDIX

Equations for coefficients a—¢ are:
Bt = s, (A.1)

with elements:
th=a =0 1ti=9 L=t &=-0 5H=5=5=0, (A2)
and (v =1fy, n=mneda®6, a=1)
By, =4—v, By, =6, By =3, By, =4+2,
B3 = 12(k cos k—sin k)/k?, Bj, = 12(k sin k—1-cos k)/k?,
B,; = 12[2—2k sin k—(2—k?) cos k]/k®,  B,4 = 12[2k cos k—(2—k?) sin k)/k3,
B3, = 12¢(sin k—k cos k)[k3, B;, = 12¢(1 —cos k)/k?,
Bs3 = v—6¢(k—sin k cos k)/k?, Bs; = 6¢ sin? k/k?,
B,, = 6¢(k*+2—2cos k—2ksin k)/k®, B, = 12¢(k—sin k)/k?,
B,; = 6¢[cos k(2—cos k)—1]/k*, B, = v+6¢[sin k(2—cos k)—k]/k>. (A.3)
Coefficients in Eq. (3.8) are: .
co = —B—6n[Q5+(Qo+7 o+ B)* +(124/k?) [Be—~ay/k
+(o+ B) (& cos k—7v sin k) —a(y cos k+¢ sin k)/k],
e, = —o+2n[e+3B+6Q0+6(y sin k+&—¢ cos k)/k2],

Cy = 57](/32f‘2°‘Qo), Cq = —%71052, (A‘4)
ae Py 2Qee+yi+e? ycos k+esink
Cg = ?+12T1{7€'3— -+ k—z' — T '—(OC+[3) T
sin k—egcos k cos k\* sin k cos k
+oc-y~*~—~—é--—- —ve +%(y2—-82) ———", (A.5)
k k k
oy Be  Qoy ysink—sgcosk
C, = —8+127]{F = —k—z— = —k‘ -I—(OC-I—ﬂ) FT
' k+esink  sinkcosk sin k2
+aycos 38 Sin i 11 _20__ +% (82—?2) i ] (A.6)
k k k
¢, = 6n(y* +&2)/k. (A7)
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