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MOTION EQUATIONS OF AN ELECTRON GAS
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Instytut Maszyn Przeplywowych PAN, Gdafisk*’
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The equation for the determination of the eigenfrequency spectrum for a spherically
distributed and non-constant electron gas has been derived by means of Hamiltons varia-
tional principle. The Thomas-Fermi equation has been solved by means of the Ritz method
for the evaluation of the electron density function in the Sn** ion.

1. Derivation of equations
Following Bloch [1] and Jensen [2] one can derive the flow equations of an electron
gas from the variational principle. We define the action
t2
6 [ Ldt = 0, €))
i

where the Lagrange function L is equal to
f ¢ —dt—H. 2

Here my and ¢ denote the electron mass and the electron density respectively.
The flow velocity  is connected with the flow potential ¢ through the well-known
equation

= —grad ¢. 3)

The last term H of equation (2) denotes the total energy of the flowing electron gas. Taking
into account the exchange and the Weizsickers corrections we get

= (Es+Ep+Ew+Eg)+(EX+E2)+E,. )
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The terms in the first and the second brackets represent the total kinetic and the total
potential energy. The last term corresponds to the exchange energy. Now we introduce
each of the energy terms [3, 4]

mg | 5 .
Es = 5 | elerad gy’ 5)
Ep = ¢ | @°dr, S 6)
rad 0)*
EW = ij\gg_a_)_ dT, (7)
Eg'= ~ [g(o)dr. " (3)
The function g is defined as follows:

1 5/3 o h

g(0) = 7 xr@’ for r<—

2p,

‘ 5 1 1 1 _h

g(e) = x10*° — “’CZQ = +K3—3 pe for rz= 2—1)—,, . 9

h
Here h = o and p, = (3m)'/2ho!'? is the magnitude of the maximum momentum
2

© B =-Zd J% dr, (0
2 ’ :
E =2 o) g, (11)
2 Fia
Ex = —x4 [ 04341, S (12)

The normalization condition may be written
fodr = N, 13)

where N is the total number of electrons of the system being investigated. The constants
have the following values [3, 4] '

_ 3 2,2/3 2 1.2
ke = 76 377) "ego,  Kw = 5 €olos

Ky = %(373)1/,33300, Ky = 3 e eoao,
1 3\Y3
K3 = 576072 9340’ K4 = % (;) eg. 14

The elementary positive charge, the Bohr radius of hydrogen and the atomic number
are denoted. by e,, @ and Z respectively. ‘



461

Summing all the terms in 4-12 we finally get the.expression for the total energy

3 R . rad 2 s
H= ——";_" J‘ ograd ¢)’dr +xp f Q§/3d1+1€wf (grad o) dt+xs f 0*dr
g e

; 2 r pye ot o 2 , ) )
—Zé} J‘g dt+ %JJ « :Q(r ) d‘cd'c'—xAJ‘g'"sdt, (15)
12

where kg = K; +k,+ks. For small fluctuations of the electron density we can write
@ = 0o+ 01, Where g, denotes the perturbation which is small in comparison to the un-

perturbed electron density go.
'~ Wenow expand H into a series. The powers greater than the second for ¢, are ne- .

glected. The derivatives are evaluated at ¢ = g, S
0H | &°H ,
H = H,+ E'Ql-l'jafgl‘l' oo (16)

where H, is the energy of the unperturbed system

0H _mg
EPR L)

20, grad ad’ 0)—(grad go)°
+1CWJv 200 grad go(grad’ o) (grad go) @ dv+3 KFJ‘Q(Z,/sgldT—Zng‘—Q—} du
r

2

f ou(grad $)dr+3 kp f 00, v.

Qo
¥
+e2 .” QO: )2 drdt’ —% xAjQélagldr, n
12
X 0*H 2 s ~1/3 2 2 5 R -1/3 2
Earye 01 = 5%¥r | 0 Cordttry S(Qo)Q1dT+6 Kz | Qo '"0idr
2 J
+ 2 [[ 02O geie 3, [ 0520, oy
12 . )
(grad’ ) grad” ¢ 2 grad go(grad’ @) = (grad go)*
S(eo) = ~ + - > ==t (19)
= Qo Qo 20 2o

Since the function H for ¢ = 0 has the minimum, éxpression (16) reduces to
: o’H

According to (1) we get the following equations:

2 0 0’H
51 . o/
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Since the variational function g4 is not present in H, we obtain

. ¢ o’ H
Ly = mof& ot di—3 PyD ol (22)

In view of (21) the two independent variations of g, and ¢ for ¢, and ¢, yield the two follow-
ing equations:

o¢

my Et_ = (P+Q)o1—eo®1> (23)

004 di
- = 4 (0o grad ¢) = 0, s @

where
P =12 (kp+x5)0e /° % xa00 >3, (25)
0 = 24S(e0), (26)
PR J o) .. @7)
0 Fi2

According to the well-known formula we get

9 .
—égt—l = div (g, grad ¢) = 0, div (grad ¢)+grad g, grad ¢ = g,V +grad g, grad ¢.

(28)
If we differentiate equation (28) with respect to time we obtain
&0, o¢ 0¢

=7 = 0oV> o +grad g, grad = (29)

By operating on equation (23) with the Laplacian operator and taking into account
V2p = 4neqo and V3¢, = 4ney0;, (30)
we arrive at the equation

v

1
o = = V(P + Q) eV 1] e
t my

Substituting (23) and (31) into (29) we find that

6291 Qo grad

= — [VA(P+Q)—eoV’p ]+

@
7 *grad [(P+Q)es~opi] (32
t mg mo

The last term eqq; of this equation is small and can therefore be neglected.
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Introducing
Z=P+0Q, (33)
and the function -

01 = 02(r) sin wt (349)
into (32) we get the equation for the determination of the eigenvalues

grad g,
my

2 [V(Zgn) - eV 1] + grad (Zg,) + w0, = 0. (35)
4]

2. The solution of the eigenvalue equation

To solve equation (35) in spherical coordinates, the well-known method of separation
of variables in convenient [5], [6]. Introducing spherical coordinates we obtain (35) in the
following form:

o Co 19 za(ZQZ) 2 grad Qo a(ZQ2)
—_ ) — | r —4759()@2 -+
mg (r* Or or My or
1 [6*(Ze,) Zey) 1 8%(Zey)
2222 hetg 8 20, = 0. 36
rz[ oz TS o T i o [T (36)

We shall seek-the solution in the form: ‘
22 = R(NY(S, ¢). (37

2

Zg,

o (1[. 0z _,0R 0Z , O°Z _OR , &R -
=0l | 2rR— +2r* — — +r*R— +2rZ +7°Z —dnelr
my {RZI: o T o ar T T To?
grad o, 7* 5 dR b 0z N 2p? 1[é*Y Sy oY N 1 %Y
=== S 5 +C e e ||
or or 592 T8V 59 T Gin?9 897

Substituting (37) into (36), multiplying through by and re-arranging, we obtain

g

my ZR

zZ Y

(3%)
The left-hand side of this equation is a function of r only, while the right-hand side is a func-
tion of 3 and ¢. Hence, both sides must be equated to the same constant, which we denote

by 4 = n(n+1).
After a slight re-arrangement, the separated equations become
o [1[, .02 +226R 0Z +2Razz +2Z6R B 2ZaZR
——{—12rR — +2r* — — +r rZ —
mg {RZ or ar or ot or r or?
4melr?)  grad gor* ( R oz w?r?
- + Z— 4+R— )+ - D=0 39
z } moZR \~ or 6r> n(n+1) 39
?*Y oY 1 8%y
—— +ctg 3 — + +n(n+1)Y = 0. (40)

09? 89  sin® 8§ 9%¢?
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. . RZ ]
Multiplying equation (39) by —— we obtain
r

2 R [20, 0Z 20, Z ad oR
z % IR (_@1_.+ﬂ_+%£ % ,\ 2R
my OF mg Or - mg T Mo or
20, 0Z 0’z ez - grad 9,0Z n(n+1
2 280 7Ly B0, S5 oy Qofo [POEGOE | 2 @D \rR=0. @)
mor Or my Or my MoOr r

In order to solve this equation we will have to know the function g,. The solution of (41)
shall satisfy the following conditions: '

R(0) = finite, R(e0) = 0. 42)

As an example we consider the Snt* ion.

3. The unperturbed electron density go

In order to determine the electron density, the total energy for ¢ = 0 must be min-
imized by a suitable choice of g,. In this case we use the Ritz variational method. Cal-
culations of this type begin with the choice of a certain trial function, which is given in
analytical form and depends on the number of parameters. The variation is carried out
with respect to these parameters. We take into account only three contributions to the
total energy of the Sn**ion: the kinetic energy of electrons (6), the potential energy of
their interaction with the nucleus (10), and the potential energy of their mutual interac-
tion (11). ‘ 0

The total energy, i.e. the sum of (6), (10) and (11), must be minimized by a suitable
choice of g, with the constraint (13) giving

Zez Q(r,) Sy
E= HKFQS’ = =2 00t €500 f Foa & |4 “3)

The trial function is chosen to be of an analytical form which is likely to be close to the
solution of the Thomas-Fermi equation and tends to infinity as r~3/2 at r = 0. At the same
time this function must fall off exponentially, just as the electron density calculated on
the basis of wave mechanics falls off. The function with these properties is [7]:

N e~ AN
Q@ = ;5( E Cix>a' (44)

where 4 denotes the normalization constant and n = 0, 1,2, ... determines the first,
r .
second and further approximations. The parameter x = \/ 7 which appears in the theory

of the Thomas—Fermi atom was used as the independent variable in place of r which is the
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3

true radial distance. With . x and r both expressed in-Bohr units, the relation between them
is as follows:

= px, (45)

where ‘
. p o= 0.88534Z713,

In our calculation we take a siinpler trial function

-Xx

N e ,
Qo7 —~ —;37(1'*'0136) ) (46)
where ¢; and A are undetermined coefficients. The solution of the two equations

Ao B “ 47
de, " A | “n

yields the numerical values of these pz{rameters

¢y = 0.30337,  1/4 = 50.58397. (48)

. B . .
Inserting x == \/ n and the normalization constant into (46) we get

N ve—,l/? %
Qo=m—4—.(—r—>—3ﬁ(l+cl\/->, (49)
i

A

Ll ll‘ dl____
1 2 3.4 5 6 7 8 9 0 ix

Fig. 1. Radial electron density of the Sn** ion. x in a, units, the radial density Dy and D, in 1/a, units
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where W, = 4+ 36¢, +144c]+240c;.Having determined the function g, we can ‘evaluate
the radial charge density defined as

D = 4nrg,, (50)

and compare it with the radial charge density determined by means of the more accurate
core radial wave functions given by Herman and Skillman {8].
The spherically averaged radial charge density is given by

Dy = 4nY (n, ) QI+ 1)PZ, (51)

where n, [ are quantum numbers, and P, are normalized wave functions.

Figure 1 shows the electron radial density in the Sn** ion. The solid line gives
the density calculated by the Hartree-Fock-Slater method [8], and the dashed line by
the Thomas-Fermi method. The statistical density distribution, as can be seen in Fig. 1,
approximates well the density obtained with the H~F-S method. Putting equations
(25)-(27), (33) and (49) into equation (41), which is subject to boundary conditions (42) we
solve our eigenvalue problem. Consequently equation (41) must be solved by numerical
methods.
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