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A number of optical-collisional processes are analyzed in the light of two ideas devel-
oped by A. Jablofiski: 1) the relationship between the broadening process and the emission
of a compound system consisting of an atom and broadening particle; 2) application of the
Franck-Condon principle for determining the line profile of an atom interacting with the
many-particle system. The line profile 7(w) is expressed in terms of a photon radiation cross
section, do/dw similar to the bremsstrahlung cross section. Both the interference between the
two processes and the generalization of the results to the case of degenerated hydrogen-like
states are discussed. Nonlinear effects of laser-light absorption in the line wings are consid-
ered. The Franck-Condon principle is used for determining the line profile of laser light
absorption by an atom interacting with the many-particle system. For the case of hydrogen
line broadening in a plasma this profile contains information on the ion field lifetime TF.

1. We are indebted to Aleksander Jablofiski for two fundamental ideas concerning
the interaction between radiation and matter, formulated in his well-known work General
Theory of Pressure Broadening of Spectral Lines [1].

The first idea assumes that line broadening should be related to the emission, not of
an individual atom, but of a unified radiating system involving the atom and the broadening
particle. The second idea, closely related to the first one, assumes that an atom in the medium
is a gigantic quasi-molecule which embodies the nuclei both of the radiator and all
particles in the medium interacting with it. In this case the change in frequency of a radi-
ated photon n4w is due to the energy redistribution in the quasi-molecule and can be
determined by using the Franck-Condon principle allowing this frequency change to
relate with a certain (static) nuclear configuration within the molecule. Both ideas have
great heuristic strength and, as discussed below, give rise to new interesting trends in
the field recently called the Physics of Optical-Collisional Processes.

* Dedicated to Professor Aleksander Jabtonski on the occasion of his 80th birthday.
** Address: 1. V. Kurchatov Institute of Atomic Energy, Moscow, USSR.
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2. The idea of a quantum radiated by the compound system: an atom + a perturber,
used by Jablofiski [1] allows us to consider the broadening effects from a more general
point of view such as the emission (or absorption) of light during atomic particle collisions.
It is clearly understood that these phenomena involve the ordinary bremsstrahlung as well.
It is; therefore, quite natural to expect that both the line profile J(w) and bremsstrahlung
intensity may be expressed in terms of the differential cross section do/dw of the photon
emission during the collision. For this purpose the well-known expression for the transition
probability of the “atom + perturber” system from the initial state “a” to the final state
“b” with the emission of a quantum of frequency @ and momentum &k may by rewritten as
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where ¥ is the atom-radiation field interaction, {a| and |b)> the wave functions represent-
ing the product of the atomic wave functions ¢,, ¢, and wave functions zp;j , Of the scattered
particle having momentum ¢,, in the potentials U, and U,, corresponding to the initial
and final states of the atom; g,, ¢, — the energy of the system in these states,
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In Eq. (2) the quantity 24w = h(w—w,) determines the difference between the radiating
photon frequency and the unperturbed transition frequency w, in the atom. The wave
function |e) in Eq. (2) as well as in the theory of bremsstrahlung (see [2] § 3.4) was taken
normalized with respect to the unity flux density of the broadening particles. Therefore,
after averaging Eq. (2) over the initial states and sum over the final states we obtain
a photon radiation cross section do/dw within the frequency range dw. There exists,
however, an essential difference from the bremsstrahlung. The dipole moment of the
scattering particle D is included in the interaction ¥ with an electromagnetic field in the
bremsstrahlung case, while in the case of broadening, the dipole moment of the atom d
is included.

Substituting the wave functions (2) into (1) we see that the matrix elements of the
operator d split into the products of the atomic matrix elements 4, over the states ¢, and
overlap integral of the wave functions wa:,b. Then, expanding ([2] § 3.4) into orbital mo-
mentum as in the case of bremsstrahlung, we obtain
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where A, is the overlap integral of the radial wave functions of the scattering particle
having the momentum ]/,

Ay = [ drr®R (PR, (). )
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The radiation power per unit volume Q(w) takes the form
do
0(w) = N,Nho Jvaf(vu) . dv, = N /N{do[dw),,, (5)

where N4, N are the concentrations of atoms and broadening particles, <...»>, — the
averaging over velocity. Dividing Eq. (5) by the total atomic radiation intensity we obtain
an expression for the line profile,

I(w) = N ; & Z Q1+1) |4,% (6)

alb

1

Eq. (6) was first derived by Jablofiski [1] in a somewhat different way, using the
particle wave function in a finite normalized volume. The same approach was folowed
by Szudy [3], and Szudy and Baylis [4], who analyzed various limiting cases of Eq. (6).
It should be noted that the relation between the line profile parameters and scattering
cross section, following from Eq. (6) in the impact limiting case was determined by Sob-
elman [5]. The analogy between bremsstrahlung and spectral line broadening, resulting
from Eqgs. (3)-(6) indicates the possibility of their interference in electronic broadening.
This effect is more easily taken into account if we substitute the total dipole moment
{ald+ D|b) of the “atom + electron” system into Eq. (1). The interference of both
processes in the electron-ion scattering was calculated by Burgess [6].

The above conclusion, assuming both the scattering and emission to be a single ele-
mentary event, indicates also that there exists interference between the scattering and
radiation amplitudes. Such an interference was first considered by Persival and Seaton
[7] when calculating the polarization of atomic radiation excited by an electron beam.

3. For the case of hydrogen line broadening in a plasma Eq. (6) needs to be generalized
by taking into account the “accidental” degeneration of the levels with respect to the
atomic electron orbital momentum /,. The atom-broadening particle dipole interaction
potential V; = —erR - R-3 is, on one hand, non-central and, on the other, it decreases
with R, following the same law as the centrifugal potential V,, = 12R-2. The first cir-
cumstance only leads to the conservation of the total angular momentum L = I+, and
the latter leads to the appearance of an additional integral of motion [8, 9].

A =1*-2Mry(nny), Ay = iy, (7

where I, M are the orbital moment and mass of the ion, n = R/R — the unity vector
along R.

The use of the wave functions 9** corresponding to the particular values of the
operators L and A is convenient because the solutions of the radial Schrodinger equation
are expressed in terms of the Bessel functions I,(gr) as well as for the case of free motion
[10]. In this case the information on the dipole interaction is contained only in the index

v =i+ 1/4 of these functions. As the results, overlap integrals such as those in Eq. (4)
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are expressed analytically (in terms of the hypergeometrical function). The function y**

used in the general formula (1) leads to a simple expression for Lyman line profiles [11],

n*hN AL L-1y2 AL L+1y2
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alb
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I(w) =

where the algebraic coefficients a;5; determine the transition to the representation of
quantum numbers A, L'; 4, —the overlap integrals of the radial (Bessel) functions.
A comparison of Eqs. (8) and (6) shows that the transitions accompanied by a change
in the angular momentum of the broadening ion by +1 as well as ail the scattering
channels A make a contribution to the hydrogen line profile. Note that in the limiting case

L>» \/ n?M the results of an accurate classical calculation [13] follow from Eq. (8).

Tran Minch et al. [14] obtained more general formulae for /(w) which are not related
'to the dipole approximation. Their structure is substantially more complicated than Eq. (8).
However, it may be reduced to Eq. (8), using the dipole approximation, see [11]. These
results are discussed in Ref. [15].

4. In the Jablofiski theory [1], the relation between the wing shape and Franck-
-Condon’s principle is established by calculating the overlap integrals (4) with the help
of quasiclassical wave functions. The result for the transition probability W(w) is

:]— 1
‘where V, = d,z, — the interaction of the atom and the radiation of the monochromatic
field g, cos wt, the derivations of the potentials and radial velocity vy are taken at the
points of stationary phase.

The structure of Eq. (9) resembles the well-known Landau-Zener formula ({10] § 90).
It determines the transition probability between two crossing terms. Therefore, the
point of this transition R, may by regarded as a certain crossing point of the terms, in which,
however, the “term” itself also includes the quantum of energy hw as is seen in Eq. (9).
Thus we are talking about the crossing of the terms in the compound (composite) system
““‘quasimolecule + electromagnetic field”.

Let us write down the Schrddinger equation for transitions in a two-level system in
the presence of an electromagnetic field,

d(U,—Uy)

dR > Ua—UbI = hACU, (9)

R=Ro R=Ro

W(w) = 4n|V,|* [wa

iha = U(Ha+ Vye'b a(—o) =1
4 (10)

ihb = Uy(H)b+ Voe b(—o0) =0
If the potentials U, ,(¢) vary sufficiently slowly, points R, satisfying Eq. (9) will make

substantial contribution to the transition probability W = |b(+0c0)|>. If the value V,
is assumed to be small, then Jablonski’s result (9) should be immediately obtained for W.

1. Their explicit form for level n = 2 was obtained by Seaton [12].
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Suppose, however, that ¥, is not necessarily small (for example, due to the large strength
of the laser field g,). Then, the absorption probability W may be derived using the Zener

formula ([10] § 90)

Tt is seen from (11) that for p > 1 the absorption decreases sharply due to the repulsion
of the quasimolecular terms by the laser field.

According to (11), the corresponding critical value &, = gy depends on the velocity
v and the potentials U,, U, of the interatomic (broadening) interaction. Both these
quantities are small in atomic units, thus the quantity eh is also small. The estimations
[16-18] show that under ordinary gas-kinetic conditions, the value &§ is of the order of
104-10° V/cm, and this value is easily attainable for modern lasers. It is clear that these
effects open up new possibilities in studying absorption in the line wings, associated with
the possibility of the active influence of the applying laser light upon the collision broad-
ening processes. In connection with this it is of interest to recall the recent experiments
by Bounch-Bruevich et al. [19], who observed non-linear effects in the line wings of alkali
elements (Na, Rb, Cs).

5. By applying Jablonski’s theory [1] the absorption of electromagnetic radiation
by an atom interacting with a large number of broadening particles, will now be consid-
ered. In this case the potentials in Eq. (10) are produced by the many particle system.
Therefore, their variation with time is of a random character. We deal, essentially, with
the stochastic differential equations.

The system of Eqs. (10) in the case under consideration may be solved by assuming
a sufficiently slow (adiabatic) time variation of the perturbation. Following Jablonski’s
theory [1], this enables us to apply the Franck-Condon principle, according to which the
main contribution to the absorption is made by the points of the configurational space
R, ... Ry satisfying the condition

d(U,~U,)

JR (11)

W=2"(1-¢e"%), p= 277:|dab80|2 [th

R=Rp

K(RD ) RN) = Ua(Rl’ ) RN)_Ub(Rp ) RN) = hdw. (12)

Moreover, if expression V, = d&, in Eq. (10) is small this approach should yield
the same result as the static approach of the broadening theory [2]: I(w) ~ |d 4> W(w)
i. e. the line profile is proportional to the distribution function W(x) of the static frequency
shifts.

Note that the line displacement as a function of the molecular static configuration
on the broadening of highly ecited atomic lines in the Fermi problem [20] for a dense
gas has been obtained by Firsov [21]. When the hydrogen lines broaden in a plasma then
k = CF (where C is the Stark constant, F — the ion field), and the function W(x) coincides
with the well-known Holtsmark distribution function H(F) [22, 23]. Kogan [24] has derived
the static distribution /() from a general time scheme taking into account the ion field
dynamics, and obtained the corrections for the thermal motion of the ions.
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When V, is sufficiently large the absorption should decrease exponentially [25] as

in the case of (11),
]> , 13)
k=440

where ..., =44, denotes averaging over all values of the derivative dr/dt for fixed k = hdw
as well as with respect to the angle 0,,, between the vectors g, and d,,.

Eq. (13) may be considered as the generalization of the Franc-Condon principle
for the case of a strong interaction with an electromagnetic field causing the transition.

If the result (13) is applied to the Holtsmark broadening of the hydrogen lines in
plasma, then the derivative {|di/dt|D>r is equal to {|dx/dt|>p ~ C{|F|)>p ~ CF/Tg to
within an order of magnitude, where 7 is the ion field lifetime [23]. Using this estimate
{|dk/dt|>F in (13) and averaging with respect to the angle 8;6, we obtain [25]

I(w) ~ VOZH(A(U/CNZ/S) (Aa’/V()zTF)3/2(CF=Am~ 14)

de

2
I@) ~ W(Aw)<|dabso|2 exp[— = ld,,beolz/ —

It follows from (14) that the absorption decreases in a strong electromagnetic field,
causing distortion in the Holtsmark profile. The particular calculations [25-27] show
that for the Hj line in the plasma with N ~ 10'® cm~2 and T'~ 1 eV this effect becomes
appreciable event at fields of &, — 10* V/em.

In this case, as is seen from Eq. (14); the observation of the profiles in a strong laser
field makes the direct experimental determination of the many-particle ion field lifetime
Ty possible.

6. The problems considered above are associated with new trends in the theory of
broadening are based on the pioneer ideas suggested by Jabloriski more than 30 years ego,
which is far from being complete. Jablonski’s approach enables one to obtain an elegant
solution of a number of optical-collisional problems as well as points out the important
theoretical problems. Among them is primarily the problem of consistenf quantum
description of line broadening by a many-particle system.

I wish to thank V. I. Kogan for helpful discussions.
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