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The method of orthogonal operators is applied to the generalized Anderson Hamil-,
tonian in order to find the one-particle Green function of impurity electrons. In the limiting.
case of orthogonal representation Roth’s result for the Anderson model is obtained. For
the case of full non-orthogonality the solution of the Wolff model corresponding to the.
result of Roth for the Anderson model is derived.

1. Introduction

There are two different approaches to the problem of the formation of the localized
magnetic moments in dilute alloys: one proposed by Anderson [1], the other by Wolff [2].
The local moment formation in the Anderson model has been studied extensively beyond
the Hartree-Fock approximation [3,4]. Due to mathematical difficulties only recently
the Wolff model has been discussed from such a point of view [5]. Here we want to present:
the application of the method of orthogonal operators [6] to the more general Hamiltonian
for which the Anderson and Wolff models are the limiting cases. The Hamiltonian is of-
the form
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and the anticommutation rules between impurity @, and conduction electrons ¢,
operators are

1
{aw C,:,f} = \/—NMW', {am cko"} = 0. (2)

For p = 0 we get the usual Anderson Hamiltonian in orthogonal representation and for
=1 the Wolff model with the, scattering potential 2V +E is obtained. In the first case
the impurity is represented by the extra orbital and in the second one the impurity orbital
is the composition of the band state only. Since we are interested in these two limiting
cases here, we shall not discuss the problem of the k independence of u [7]. To investigate
the Hamiltonian (1) the standard method of equations of motion for the anticommutator
Green functions will be used [8]. The Fourier-transformed Green function will be denoted
by {4|B) nad {...) will stand for the thermal average. The notation aa, = n, for the
impurity electrons number operator (¢ = 1, ]) is also introduced.

2. Calculations and results

We are interested in the one-particle Green function for impurity electrons. The
following system of equations of motion is derived-

' V
(w—E){a,la;y = 1+uV{a,la;y+ JN Zk: Kerslagy

JN ekCslas )+ Uapn_la; y, 3

(CO Sk) <<cka[a >> = \/—]V + \/N(V_J_IJE) <<aa'[a >>

+ % Z <<cka'[a:>>+ '\l;—% <<a¢zn—ala:>>9 (4)
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The new functions which appear in (5) should be expressed approximately in terms of
those standmg on the left-hand side of (3) to (5). Thus, the operators 4;, = a, a_,,ck e
Ay =a ck g, A3, = Cpoii_, should be expressed in terms of a,, ¢g,, a7 We can



RS

65

treat the operators 4;, as the elements of Hilbert space # in which the scalar product
is defined by [6]

(Aa B) = <{Aa B+}>’ A, Be % (63)

Let us consider # C # which is spanned on the set of orthogonalized operators {O;}
(i =1, ..., N). Then an arbitrary operator 4 € # can be given by the linear combination

N

A=Y 20,+B, (6b)

i=1

where o; = (4, O;) and B belongs to the orthogonal complement of 5. In our case we
have the set of operators 4;, which we want to express in terms of those forming the
Green functions on the left-hand sides of (3) to (5). In our approximation we neglect the
Green functions formed by type B operators as given in (6b). Thus, the set a,, ¢4, an_,
can be orthonormalized in the sense of (6a), i. e. it can be replaced by

2\~-1/2
Ais = Qg Ay = <cka'_ \/_IL;—V ao—) (1_ f]\?) ’ (7)
= (aan—a_<n—a'>aa) [<n—a'> (1_<n—a>)]_1/2 (8)

and the desired expansion can be obtained:

a3

Alo‘ = <ai-ack,-d>aa-
+[<n—a> (1 '—<n—a>)]_1/2 F<nqato'ck,—cr> _<n—a> <aio'ck,—o'>+ \/L].V <non~d>] Q365 (9)

+
A2¢r = <ck, L —o'>aa

+[<n—a> (1 '—<n—a>)]_1/2 <aacl:;—a'a—aa:>+ :/P;——\r <nan—a> —<n—a> <c]-t":"0'a“6>J Q345
) (10)

Ay = <1 gdehet \—/’j:V [Knyy (1=<n_ )] as,. 2 (11)

The substitution of (9)~(11) to the corresponding Green functions in (5) enables us to find
T—a'(l + VHl,—a'+y’K1,—'0')

Carlecy = e U_,B_y~T_(VH, ,+1K,_,)’ (2
where
T, = (14U, (13)
H,, = uFU,P,, H,,=FV,P, K, =uLU,P, K, =LV,P, (14)
P, = 1—p*U(n,5L—uVFT,, (15)

Uo- = UMo-—la Va = V+:UE_:uUaBa" (16)
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2

M, = w0—E—U—2uV —W,—yZ,— %Z - an
x
2

B, = (n,) (W,,+uV+uZ,,+ N Z 8k> , (18)

%
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=% Do Lmorh @

&
|4 1
Wo—<no'> (]—_<na>) = - ﬁ Z @ka’7 Za'<no'> (1_<na>) = - \—/_N— Z sk@km (20)
% 2

0, = (ehaimdat.a D>+~ (nn_sy— o (nd Q1)
ko koo —o“ —a \/N o't—0o \/N 6/ /

In the limiting case u = 0 we get the result of Roth [4]

w—E-W_,—U(1—-{n-,))

arl@sd = (B V2F) (@—E—U—W_p)—Un_,y (VF—W_,) (22)

and when p = 1, the solution of the Wolff model with the scattering potential 2V+E
is obtained

by o T 23
<<aa'lao'>> - 1_ _aFa ( )
where

QQV +E)N,+Uln,> (a)—ZG— —11\? 2 s,,>

— L ——— — k e
D, = N+ U , 24)
N,=a)—E—2V—U—Z,—%Zsk. (25)

k

In (25) Z, as given by (20) and (21) for p = 1 is understood. It can be checked that for
the case p = 1 the equality

Ji]_\, Z Conlaly = Caglaly (26)
k

holds, as should be due to the fact that the impurity orbital is constructed from the band
ones.
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It must be noted that {(n,> cannot be calculated with the use of Eq. (22) or (23) only.
The correlation functions which appear in W, or Z, should be calculated from correspond-
ing Green functions. We have obtained

Kagn_,la;y = M, {<n‘—a>__B—a<<aala:>>

v N . ‘
+ \/—_7\7 <n-—a> Z <<cka'|aa >> + \/N <n—-a'> Z 8k<<cka]aa' >>} (27)
k k

and

1
\_/ﬁ Z <<cka-lazj>> = Hl,—d+H2,—a<<ao'la:>>5 (28)

1
\Tﬁ Z 8k<<cko‘a:>> = Kl,—a+K2,—d<<aaIa:>>' (29)

k

Eq. (10) accomplishes the systems of Green functions needed to be known for the selfcon-
sistent calculation of {(n,). It must be noted that for the case of the Wolff model (x = 1)
this set can be simplified only when u — co (even for the case of symmetric band,

1
v Z &, = 0). Then e n |at) = 0 which is visible from (27).
k

3. Summary

We have applied the method of orthogonal operators to the calculation of the one-
-particle Green function of impurity electrons for the generalized Hamiltonian for which
the Anderson and Wolff models are the limiting cases. Such a formulation enables one to
treat both models with the same accuracy within the framework of a given mathematical
method. We have got the result of Roth for the Anderson model and the corresponding
solution for the Wolff model in simple manner. It is also worthy to mention the possi-
bility of further improvement. In order to obtain Kondo-type effects one must enlarge the
set of orthonormal operators (7) and (8) to include those appearing in decoupled Green
functions in (5). Usually, the equations of motion for these Green functions are decoupled
in terms of {a,la;y and {cy,la;y [10]. Such an approximation leads to the spurious
solution for the case 2E+U = 0 in the Anderson model [11]. From our point of view
this corresponds to the neglecting of all the orthonormal operators in (6b) except of a,
and c;,, which seems to be a rough approximation. Instead of this the above mentioned
enlarged set should be considered. The presented method does not lead to the enormous
mathematical difficulties in the case of such an enlarged set, in contrast to. the Roth’s
approach. It is an interesting problem for further research.
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