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ON THE PRESSURE BROADENING OF THE MOLECULAR
SPECTRA II. THE MOLECULAR LINE SHAPE IN THE DOPPLER
LIMIT* '
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The molecular spectrum line shape within the Doppler limit has been investigated.
The resultant line shape appears to be velocity dependent Voigt profile. The semiclassical
expression for the line shape has been derived on the assumption that the potential is com-
posed of a core potential and a multipole term. The resultant formula holds true for
interactions of order higher than dipole-dipole.

1. Introduction

The statistical correlation between the Doppler and pressure mechanisms of line shape
broadening has been the subject of numerous papers [1-11]. A consideration of molecular
lines in this particular theory based on the Liouville space formalism has been presented
in the paper [12]. In the impact theory limit the succesive collisions are separated by
a large time. However, they are correlated, for the perturber velocity distribution seen
by radiator depends on its own velocity and thus on its last collision. The above fact
seriously complicates the line shape calculation even if the semiclassical description is
used. Particularly in rotational molecular spectra both m-degenerate radiative states [i),
| f> are strongly perturbed and one must take into account the influence of collision-induced
velocity changes of the radiator on both states. The nonspherical potential in this problem
involves additional complications, whence the simple model is hard to create.

In this work the theory of molecular spectra line shape for the low pressure region,
when Doppler broadening is larger than the collisional one, has been developed. In the
second Section some basic assumptions and formulae are presented. The general formula
of velocity dependent operator relaxation [12] was used here. Assuming the collision-
-induced changes of velocity of radiator can be neglected, the velocity dependent Voigt
profile of molecular line has been derived.
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In the third Section a semiclassical model is proposed. Thé formula for the velocity
dependent half-width in straight path approximation with the assumption of multipole
potential interaction and isotropic effective potential core is derived. The above expres-
sions are true for the multipole interactions of higher ranges than dipole-dipole.

2. The line shape

In paper [12] the impact theory of relaxation collision effects with regard to the corre-
lation between pressure and Doppler line broadening as applied to molecules has been
presented.

In the elastic scattering approximation the relaxation operator may be shown to be
a combination of on-the-energy-shell 7" transition matrix and can be split into diagonal
and non-diagonal parts in the eigenvalues state eif(EEOJM ) of the momentum and. the
whole angular momentum operators of the radiator. In the trace metric of the Liouville
space as defined for the two operators 4 and B of Hilbert-Schmidt by the scalar product

(4, B) = Tr (4*B), 0}

the molecular relaxation operator gets the following formula
(e (kpoeI M), 5eif(;§61 ‘M) = qsif(i;o)é(i;o_i;é)éJJ’MM'+Hif(56’ Pos JI'MM'); @
eigenvectors e,-f(r_c'ﬁoJM ) form the orthonormal basis
(s (RPoTM), €1, (Kpo]' M) = 8585upa:3(Po— 56), ©

where x is the given difference of the final state momentum and the initial one p, of the
radiator and J and M label the quantum numbers of the whole angular momentum operator
of the radiator.

The diagonal part of the relaxation operator <P,-f(§0) in the isotropic environment
is ‘the following:

Z <jimvii;°‘|T|jimvi;a> Z <J'fmvfi;°‘lT|jmefi;°‘>*

i#(Po) = n(2m)> | = — Y !
P;4(po) = n(2m) 2j;+1 T 2jp+1 @

av

where T is the transition matrix, jv; and jv, denote rotational and vibrational quantum
numbers respectively of the initial state |i) and the final one |, m stands for a magnetic
number, o is a set of quantum numbers of the intérnal motion of the perturber, p is a relative
motion momentum and » indicates the density of the perturber. -

Finally by ...}, is meant the average over the perturber states of momentum and
internal motion with the canonical ensemble whose eigenvalues of the density matrix are
as follows:

...ﬁp2

olp, o) = % e 2 o(w), : (5)

RS
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where Q is the statistical sum and f§ is the inverse product of the Boltzman constant
and temperature and o(«) denotes the Boltzman distribution function.

In analogy to the conventional theory of pressure broadening of a line (when the
motion of the radiator is not taken into account) &, f(l-;o) can be viewed as the term due to
‘phase-interrupting” collisions [13].

The nondiagonal part of the relaxation operator is supplied by:

] 4 1 \" —mpmmy (g S
I, = in(2n)* (2T +1) (27 +1) (=1 —m, M m

mymy
mi'my’

x (_Jng, . Jm> Cigmipy o | T|j pmgv By *6(e—8) < jimivibo| T jimivip'e’>Dys  (6)
f i
where (: : :) stands for 3j Wigner symbol, ¢ for the internal motion energy.

It is noticeable that the above non-diagonality proves to be a consequence of the
translational-internal coupling scheme of the system, since there is some amount of the
angular momentum coupling between translational and internal of degrees freedom.
II;, includes the velocity-dependent effect (Dicke narrowing) which has been observed
in rotational spectra [14, 15]. In general both the velocity-dependent and “phase inter-
rupting” collisions effect cannot be separated. However, respectively to their different
pressure dependence they can be separated if the contributions up to the first order only
are retained.

In the so-called Doppler limit i. e. in the case when the Doppler half-width is larger
than the collisional half-width it is possible to neglect collision-induced changes in the
radiator’s velocities [16]. It is equivalent to neglecting for the calculation of the Jine profile,
the input arising from the nondiagonal part of the relaxation operator IT;; (see Appendix).
If the radiation emitted from the gas is spherically symmetric as has been formerly assumed,
then the corresponding line shape -of the dipole vibrational-rotational transition results
in the velocity-dependent Voigt profile:

I(w) = %fdsioe@o) - = L °3 ; - Q)
(=0 =22~ 4,5 ) +(Ty G’
where |
T'y(Po) = T(Po)+T 4(Po), o ®
| | A;1(Bo) = Ai(Po)+4(Bo) NG

are collisional speed dependent widths and shifts determined respectively as the imaginary
and real part of & f(Eo).

. The above expression describes the deviations from the standard Voigt profile [7, 17].
This deviation is due mainly to the finite life time of the radiator with the initial momentum
Po. As compared with (7) the initial formula used in this paper has been fairly simplified.
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That is to say, as has been suggested in the theory of gas lasers [18, 19] the velocity
dependent relaxation operator &, f(f)o) may be averaged over the momentum components
perpendicular to the z-axis i. e. to the momentum transferred from the electromagnetic
field to the radiator. Instead of (4) we get therefore:

D, f(POz) = % (D(po)— (D}k(po,,)), (10)

’ p% p»z
Po(poz) = 2n(2m)° | dspyot (22 ) | dopyot _1_>
2my 2m,

2

o 2
- S p >, 1 p > 2 - -,
X J dZPOJ_Q2 <2:nl ) J‘dzpoiQZ <2:n—L ) 53(P‘P )5(P0J_ _pOJ_)
0

0

where

I
i

«Z oy, po| T| jmy,pocy
x\Z =

o , a=iorf 11)
C2f,+1 N (
13,1_;1 being here the momentum of the center of mass and the momentum of the
perturber respectively, m,, m, standing respectively for the mass of the perturber and
the mass of the radiator. Next in view of the fact that the diagonal elements of the T
matrix are dependent only on the magnitude of the relative momentum p One can give
(11) in a simpler form [20].

o0

B Nm [ (P}
ino=er () 2 o ()
0

Mg

P 2.\ /Y Gamvape| T} jmv,poy
X E Y ‘
P1:0 WA i ’ ; _ (12)

avy

where u is the reduced mass and p . and p,, are the perpendicular component of the
relative momentum and the z-components of the perturber momentum respectively.

Again, for the sake of simplicity one takes up the rigid rotator model for which the
Hamiltonian of the vibrational energy of the radiator and the perturber is. treated as
a constant of motion. Hence it is necessary to neglect the dependence of the T matix ele-
ments on the vibrational states.

In addition we assume here the shifts 4;p. are to be small so they can be neglect-
ed [21]. ,

Finally, in this approximation for the line shape function of the molecular rotational
spectra lines we. arrive at

[o4)

1
o) =+ f AD0.0(Pos) — -, (13)

KPo:\ - 2
% D—W;p— < +(T{(po)+T ¢#(po.))
T my

_Fi(pOz)+Ff(p02) -
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where

Y < jampal|T| jmpecy
T (poz) = 2n(2m)* Im | ™ —

— , (14)
2j,+1 Lav

in which {...> | ,, alongside with (12) shows the average over the perpendicular compo-
nent of the relative momentum and over the z-component the perturber momentum and
over the internal motion of the perturbers.

3. Semiclassical model

The exact calculation of the velocity-dependent Voigt profile (13) appears excessively
complex. In order to facilitate the problem a semiclassical approach is assumed in which
translational motion is regarded classically while their internal motion quantum mechani-
cally. The easiest way is to evaluate the diagonal elements of the 7" matrix (14) in the eikonal
approximation [22]. For this purpose a straight-line trajectory is assumed by the relative
velocity and impact parameter. In this approximation the diagonal elements of the T
transition operator may be expressed -as follows:

. R ip , .
{jampa|T|jmpoy = mfbdbmmocls(p, b)—1]jma>, 15)
0

where S(p, b) is the classical path scattering operator for the intéraction between the radiator
and the perturber.

Now some standard methods of the broadening pressure theory (that is when the
Doppler effect is neglected) can be included. We assume that the whole Hamiltonian of
the system of two rigid colliding molecules is of the form

H = Hy+V(8)+ Vi(D), (16)

where ¥, is the isotropic potential core, V, is anisotropic multipole long-range potential
of the shape [23]

Y,(2)

rl*-l(t) °

Vi) = z C(L L), (41) an

Uila

where
1 l1 ZZ : Y (7' )) (V ) (18)
n iy Hy M L\ 1) S pa\ 2

Hipz

is a tensor operator of rank /.
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The unit vectors 7, and 7, denote the molecule orientation and @ is the orientation
of 7, Y,,(Q) are spherical harmonics and Cy(/,1,) is given by

CALL) = (—1)" 4n(21+1)! * .
ACA QL+1)1CL+DIQI+D) (19)
Here Q) = I-th multipole moment of molecule sand I =L+1,s =1, 2.

The assumption that the core potential is here connected with the division of sheer
translational effects arising from the isotropic short-range strength forces and the effects
resulting from the anisotropic potential part.

Thus, a core potential ¥, of the from

d
Vo(t) = — 20
o0 = s (20)
is taken, where d is the strength parameter and k is the steepness parameter. The abové
potential has been assumed by Srivastava and Zaidi [24] in view of the cutoff impact
parameter in Anderson’s theory [25].

As is known the S operator can be defined in terms of the time development operator:

S = U(+0, —o0), @1)

where the development operator U(f, —oo) satisfied the Schrédinger equation with the
potential V(7))

iHot iHot

ih —% U(t, =) = e % Vi(f)e % U(t, —o0), (22)
and
V(®) = Vo(O)+ V(D) (23)

The development operator U(#, —oo) may also be written as

t

. i ot - Hor
U(t, —0) = exp(— Y J dt'e & Vo(t)e "% ) U,(t, — o0). (24)

-0

Now, it is assumed that the operator ¥, does not operate on the internal states although
it does depend parametrically [6]. Thus the matrix S may be given as the product

S = 8,x8y, (25)
‘where
t

S, = lim exp(— fil J Vo(t')dt’>, (26)

t—>o0
- ¢
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and
t

LI LI
S, = lim P exp (— - f & Ty (e T dt’) . 27)
t> o 1

As in [24, 26] the S, matrix is going to be treated nonperturbatively while the S| matrix
is going to be developed into the expansion up to the second order perturbation calculus
under the assumption that the operator ¥y(¢) commutes with itself at a different time.
We obtain as a result

= 1-1S{" -1 [S{T, (28)
where

Ho

S, = L J Fyt)e wF T ar. (29)
h

Making use of the above assumptions the diagonal part of the velocity-dependent
relaxation operator can be expressed by the formula

P(pos) = (2 1) <P(I 2mbdb(So—1—1iS, Z Jamal S jamar)
~15, Y Y GamalSPljam'e’y am'e/|STO1jmad)y | (30)
mm’ & jg'

The matrix elements which appear in the above equation can be evaluated in terms.
of the vector addition coefficients and modified Bessel function.
Thus from the multipole interaction (17) we get the following dependencies

<Z <jamocls(11)ljama>>_L,av = ( Jap-ll; )#F( a) (31)

where the function F'(j,) is supplied by

Fi(j) = Y Cilily) (_211+1)(21L|'_1_)\%(l1 L l)(ja Iy ja>
Jo) = 4n 4n ) o 0 0o/lo 00

- il

G . . m+m .a l .a j l . ] l ]
x ZQ(]z)(sz'i‘l)Z.(“l) i ’(fm 0 %)(-Jnl 0 Jm><0 0 0)°

Ja

(32)
where o(j,) stands for the population factor state j, and Cl,, I,) is given by
1
~ 214+1\* rd+1) (- D r(1+2k+3)
Cyly, 1 Cyly, 1 — 5 33
(i 1) = Gl 2)( ) RO+ £y (20420 (33)
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Here I is a I'-function. In the second order approximation the matrix elements of the
operator are expressed by:

. N N . (2Ja+1).u
<2 z <]an’lO€lS(11)I_]anl o4 > <]am o lS(11)|JamOC>>_|_,av - zbzt G( a’ T)a (34)

Ja' mm’

where the function G'(j,, wt) is included in the formulae

1
G'(j @7) = Ton3 Z Ci(ly, 1) Z e(j2) (%,+1)

111> Ja'j2i2"
P P A S PR P A 2072
— K 35
X(o 0 0)( )Z(l u)'(l+u)'( DK, 39
where
@ = 21cB(j(jo+ D)~ ji(Go+ D472+ 1) —j2(ja+ 1)). (36)

Here K is a modified Bessel function, w is the frequency corresponding to the energy
transferred from translational to rotational motion, T = b/v is the duration of the collision,
B is a rotational constant, ¢ is the speed of light.

Because of the G'(j,, 7). is a slowly varying function of 7, the essential simplifying of
the problem is possible here [27]. Consequently we put:

G'(jo 07) = GY(j,, 7), (37

where 7 is the average duration of the collision. Then with I',(p,,) taken as the imaginary
part of (30) we obtain

o

I'y(po2) = 2 / bdb [ cos —— —1 
“por 21a+1\ T
0

) 1 2 1
+ ( J“;;Zzu F'(j,) sin (bkn_l) -3 1 { ],,;222# Gl(]w @7) cos <bi1>>>l’ (38

where # is represented by
()
d 2
(39)

Ry
11——\/7'5—; N

As seen in (38) due to the assumed core potential and (25) this expression can be integrated
analytically over the impact parameter b.
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Thus finally the velocity dependent half-width line is the following

I'(Pos) = i (%p _k__—3 sin _n_t;a

alPoz) = 5 A\ P! k=1 2 k=1
20,41 (1) -1z -2\ . (7 1-2\

By P Sy B 22TV Ry
(=2 <p 1 o) G o ) PO

. 2 — — —
G D) 2(2j,+1) <ﬁ) i E’C}:TZF (1 + 2kl 12) cos ( Zkl__lg)>>g (40)

21-2) \p
2< < k+1. 41

Y

where / must satisfy the condition

Formula (13) together with (40) determines the shape of the rotational spectrum
line within the Doppler limit according to the multipole and core potential parameters.

General equation (40) is true for the higher than dipole-dipole range of interactions.
The first component in (40) contributes to the line shape coming from the relaxation veloc-
ity. The other two components show the interference effect between the translational
and internal degrees of freedom.

Equations (13) and (40) are convenient for numerical calculations since they can be
easily integrated over the respective momentum components of the radiator, the perturber
and the relative motion. '

Subsequently, the application of the theory to the calculation of the self broadened
collision widths of rotational Raman lines for such molecules as N, and CO, will be taken
into account in the next paper. Specifically, from comparison of theory with experiment
one may hope to obtain some information about the short range interaction.

The author wishes to thank Professor J. Fiutak for suggesting this problem and for
a critical reading of the manuscript.

APPENDIX

The spectral line shape I(w) in impact approximation for multipole transitions for
nonoverlapping lines is given by

JMia\ %, JM
=3 S o I
JeI+1) 27 +1) -

Jr if

MM’
where (i||X"™||f> are reduced matrix elements of a multipole J-th-order tensor operator
X?™ for 2’-pole interaction with radiation, M indicates particular one (2J-+1) irreducible
components of the operator and I7y.(w — ;) is a line shape function which in Liouville
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space notation is given by

, 1 Do Po
-0, =—Im | d dappot | = )
ar ( O;r) . 3Po€? 2m0 3P0@ Img

Y 1 e
X (eif(KpojM), = ~ TR eif(Kp()J M )) . (AZ)
. if_h0_¢

Here cigenvectors e, ,(JM) of the radiator internal energy are defined by the relation

e (JM) = Z (= 1Y/ ™I +1) (—nj;f M m) WVejemye) v jimyl, (A3)
mimys
and the eigenvectors e; f(EEd) of the Liouville space of the kinetic energy operator ho of

radiator are given by

-+
PoK

ﬁoeif('-éﬁo) - ( -

K> .
+ 7) e;(Kpo). (Ad)

o 2my

The molecular operator relaxation @ is defined when it operates on-the eigenvectors
e, (kpoJM) = e;,(JM) e,,(kpo) as follows

Do) ([s55 Y T

Ji.lz ]f.l.f mtmf
nj mf

éeif(;éi;oJ M) =

) . . J .i +! JI .; . , - . o
x(@I+1) @I +,1)>2(_’,;;f y )(_”, ’ ) (<jimivipa T\ jam;vipocy

M m m; M m;

X 5mfmf Jrif’ <-’fWLf'vfpo£I T|-]fmfvfp“> (Smgml i )elj‘(KPOJ M )

(p12+p1'2)

l ’ = > -, —B :
w5 ), Jo fai iR a7

a

x {jgmygvppa| T jymyv p'a Y*5(e—¢') <jimiv;-z3oc1T|j;mzviii'oc'>ei,~(EEaJ'M'))>ay, (AS)

where @ denotes the volume of the system.

When the matrix element of the above relaxation operator is constructed, the isotropy
of the system would be taken into consideration. Following this matrix element Eq. (2)
is obtained.

Formulae (2) and (A1) describe the interrelation between the Doppler and pressure
broadening of a line, in the whole pressure region of interest. In particular, in the Doppler
limit i. e. when the mean change of the Doppler shift E(EO—EO’)/mQ is greater than Il;;,
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the line shape function I7,) (w—w;,) can be expanded into a series of the IT,, operators
as follows:

JM' Po \ 300 - ( Ps >
W)= |d I —w;i;po)— | d
v (=) = J 31709 (2m0) (w—y5; Po) j 31709 2m,

p . N
J d3P0~. <2}’:’)l > IOO(CU Dyipy pO)Hzf(JMPO’ J'M'p )Ioo(w”‘wif; Do) (A6)
: ;

where T°%°(w -, 1 Do) is the eigenvalue of the diagonal part of resolvent operator which

is independent of J and M.
In the first order approximation when the i imaginary part of (A6) is used, a velocity

dependent Voigt profile is obtained which appears in text as formula (7).
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