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NON-ADDITIVE EFFECTS IN THE FIRST-ORDER
INTERACTION ENERGY OF HYDROGEN MOLECULES*

By A. Le$ anp E. Rabpzio
Quantum Chemistry Laboratory, Institute of Basic Problems of Chemistry, University of Warsaw**
( Received April 5, 1978)

The first-order three-body contribution to the interaction energy of three hydrogen
molecules in the ground state has been examined. This energy is shown to be small for inter-
molecular distances close to the van der Waals minimum. It is also shown to be almost equal,
but of opposite sign, to the Axilrod-Teller potential. The influence of the non-additive term
on the cohesive energy of the o-H, crystal is also discussed.

1. Introduction

Recently, the interaction energy between hydrogen molecules has attracted consider-
able attention and has become a subject of theoretical [11 and experimental {2] investiga-
tions. Most of these investigations have concerned the short-range, repulsive part of the
interaction potential. In this region, the interaction energy cannot be regarded as a sum
of pair interactions and should contain the non-additive corrections. The recent ab initio
calculations [3] suggest that the nonadditive term can be sufficiently well approximated
by the three-body interactions when the distances between molecules exceed 3.5 a.u.
At shorter intermolecular distances, the fourth and higher-order effects should be taken
into account. However, if distances between molecules are about twice as large, i.e. 6 a.u.,
or more the non-additive effect should be relatively less important than the two-body
interaction energy. ,

The purpose of the present work is to estimate the non-additivity of the first-order
interaction energy between three hydrogen molecules at the distances corresponding to
a van der Waals minimum of approximately 6.5 a.u. The non-additive contribution to
the cohesive energy' of the o-H, crystal has also been calculated.

* This work was supported by the Polish Academy of Sciences under projects PAN-3 and MR. 1.9.
#* Address: Instytut Podstawowych Problem6w Chemii UW, Pasteura 1, 02-093 Warszawa, Poland.
“excluding the zero-point energy.
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2. Method

In the perturbation theory the interaction energy between N molecules is expressed
as the sum of the first-order (electrostatic and exchange), the second-order (induction,
dispersion and exchange) and the remaining higher-order interactions. Electrostatic and
second-order dispersion interactions are known to be additive. Non-additive contributions
resulting from induction and second-order exchange interactions are estimated to be small.
In the case of three hydrogen atoms they are considerably smaller than the contributions
from the first-order exchange interactions [4]. The calculations carried out for this system
indicate that, for short internuclear distances, the non-additivity of the interaction energy
is mainly due to the first-order exchange interactions and at larger distances — those
exceeding the van der Waals minimum — it is well represented by the Axilrod-Teller
potential [4, 5].

In the present work the non-additivity of the interaction energy is approximated by
the sum of the first-order exchange contribution and the Axilrod-Teller potential. Un-
fortunately, we are not able to estimate the second-order non-additivity. However, previous
results for the H system [4] suggest that, at distances exceeding the van der Waals minimum,
the second-order non-additivity is smaller that the first-order non-additivity and has the
opposite sign.

According to the exchange perturbation theory the first-order interaction energy
for a system.of N molecules can be expressed as follows [8]:
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N
@0=];[Q/JA, A,B=1,2,...,N’

is the simple product of the antisymmetrized wave functions describing isolated molecules,
V5 is the interaction operator between molecules 4 and B and &/ denotes the idempotent
antisymmetrizer for all electrons in the system. According to Jeziorski et al. [8] Eq. (1)
can be expanded as:
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where W,5 denotes the nuclear repulsion energy of the molecules 4 and B, the indices
p and q are taken over all orbitals belonging to the molecules 4 and B respectively, r and s
run over all molecular orbitals of the entire-system and Uy is the electrostatic potential
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of the nuclei in the molecule B. D,, is an element of the matrix D = (1+5)~! where §
is the matrix of intermolecular overlap integrals.

In our calculation, Eq. (2) has been decomposed into a sum of two terms corresponding
to two- and three-body interaction energies [8], e.g.

E(D = ED(2,3)+E1)(3,3), 3)

int

where E((2, 3) denotes the two-body interaction energy between three hydrogen mole-
cules and E*)(3, 3) the three-body non-additive contribution to be investigated.

3. Results

The molecular orbital for the arbitrary H, molecule used in the present investigation
has been allowed to take the form of various Gaussian expansions obtained by least-
-square fits [9] to the Hartree-Fock orbital calculated by Kotos and Roothaan [10]. Five
function bases have been employed in our calculations: (111), (210), (4|1), (5]2) and (7/3)
where, generally, (k|I) denotes a basis set composed of k 1s-type Gaussian functions centered
at the nucleus of each hydrogen atom and [ 1s-type Gaussians functions centered at the
molecular center of mass.

TABLE I
Two-body energies for the system of 2H, from the first-order perturbation theory?
\Basis _ B I
~N i (210 “@n 512) (713) B;® B II°
RN :
4.09] 1.1429 X 102 0.7967 x 10~2| 0.8274 x 10~2| 0.8316 x 10-2{ 0.8639 x 10~2| 0.9120 X 10-2| 1.0081 x 102
6.5 | 0.1863 x103| 0.0925 x 103} 0.1279 x 10~ 0. 1291><10‘3 0.1335x10-3| 0.1034 x 10-3} 0.1289 x 10~3
10.0 | 0.3114x107%| 0.2079 x 10-%] 0.3869 X 103 0.3996 x 10—5 0.4700 x 10-5} 0.5000 x 10~5| 0.3500 x 10~-°

2 Axes of hydrogsn molecules are parallel to one another and perpendicular to the line joining the
molecular centers of mass..In all calculations the H-H bond lengths are fixed at 1.4 a.u. b Basis
Bs: 4(1s), 3(2p) {11} ¢ Basis BII: 10(1s) [11]. d All quantities and results aré expressed in
atomic units, 1 a.u. of energy = 4.3594x10'8 L.

In Table I the first-order interaction energies of two hydrogen molecules, calculated
‘using the above five bases, are compared with the previous results for this system obtained
also from a perturbative procedure {11].

It is seen that the results for the first-order two-body interaction energy obtained
in the present work are close to the quoted values. In our opinion the differences are due
to the different zeroth-order wave functions used by Kochanski and by ourselves. Moreover,
one can see that the first-order interaction energy of two hydrogen molecules is rather
insensitive to the quality of the molecular orbital employed in the calculations. Supposing
that this conslusion holds in the case of three-body interactions, we have calculated most
of the two- and three-body interaction energies by using bases denoted as (4|1) and (5{2).
It is worth noting that the orbitals denoted as (1]1) and (2|0), in spite of being very crude
approximations to the Hartree-Fock orbital, reproduce quite reasonably the two-body
interaction energy. »
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Two- and three-body interaction energies in various orders of the perturbation theory
for three hydrogen molecules forming an equilateral triangle are listed in Table II.- For
comparison, the respective values for the isoelectronic system of three helium atoms are
also given (in parentheses).

It is seen that the first-order three-body interaction energy £V (3,3) is smaller than
EM(2, 3) by at least an order of magnitude and at large intermolecular distances decreases
considerably faster than the two-body interaction energy (see the change of &), It is
necessary to pay attention to the fact that both of these energies decrease exponentially
when the intermolecular distances increase.

The comparison of E (3,3) for the isoelectronic systems of three hydrogen mloecules
and of three helium atoms shows that in the atomic system the three-body contribution
is considerably smaller than in the molecular system. This result is not surprising because
the electronic clouds of the atoms are more concentrated around the nuclei.

TABLE IIT
Dependence of first-order two- and three-body interaction energies on the mutual rotations of three hydrogen

molecules 2

== 5mmtmm‘mmw.ewm-n.j L ST T O . T £ )

1
Geometry ° 2y e | &

6

N saa=07% -0 " | 18
17 b

P=30°| . B
‘A‘, 320707 | -694x107 | -22
w :wg " 5
I -, -
(p/.’/\,.\w 3227380 ~8.30410 26
1

- 9, =607
% é S""’ =20 zeme™s | -1028x107% | -21
%
\4 =0 - =
v=30°| rio0upt | -s89x0°¢ | -08

2 The molecular centers of mass form an equilateral triangle measuring R = 6.5a. u. on each side.
b The broken lines denote that the axis of the molecule is perpendicular to the plane of the triangle; the solid
lines denote that the axis of the molecule lies in the plane of the triangle. ¢ The calculations of the
first-order energies have been carried out using the (4/1) basis.
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The dependence of E (2,3), EV (3,3) and & on the mutual rotations of three
hydrogen molecules is shown in Table III.

Figure 1 illustrates the changes in &§" resulting from changing angle in the triangle
formed by the molecular centers of mass®. The same.curve shape been obtained in the
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Fig. 1. Relative values of the first-order three-body interaction energy (" = E)(3,3)/E(*}(2,3) for isosceles
triangles formed by three hydrogen molecules. R4p = Ry4c == 6.5a.u.

SCF calculations of the energy of the 3 H, system at shorter distances [3]. It may also be
mentioned that similar curve shapes have been obtained for the first-order three-body
effects in several rare gases [12, 13].

4. Discussion

Several conclusions follow from the above results. First we see that at distances
corresponding to the van der Waals minimum, the non-additive three-body contributiqn
E™ (3,3) is small and represents only about 2 % of the two-body first-order energy £ (2,3).

2 The calculations for these configurations have been performed using the basis (5/2).
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Moreover, E" (3,3) and the third-order three-body potential E‘> (3,3) have opposite
signs but almost the same absolute values. :

Near the van der Waals minimum, EV (3,3) and E" (2,3) depend on the mutual
rotations of three hydrogen molecules. However, the relative three-body contribution
to the additive two-body goergy e. g &5 does not strongly depend on the rotations being
a‘function of the shape of the triangle formed by the molecular centers of mass (see Fig. 1).
It is interesting to note that the &$" values can be easily estimated using very crude orbitals
like (1|1) and (2]0). Moreover, if we expand the £V (3,3) and E (2,3) terms as a power
series of the intermolecular overlap integral S (up to an order of S3) and if we use the
Mulliken approximation to the multicenter integrals we obtain the following result holding
for equilateral triangles:

Hence, if a very crude orbital reproduces the correct values of the overlap integral, it may
reproduce the relative three-body first-order energy as well. As Table II shows the (1]1)
and (210) orbitals do it. The small values of the three-body potentials resulting from the
first- and third-order of the perturbation theory and also their mutual cancellation suggest
that the non-additivity of the interaction energy of three hydrogen molecules can be
neglected at distances corresponding to the van der Waals minimum. Both non-additive
corrections have also been estimated to the cohesive energy of the o-H, crystal. In the’
calculations of the first-order term the triples formed by the nearest neighbour-molecules
have been included. In the case of the third-order term, the summation over the lattice
has been performed by means of Axilrod’s method [7].

In order to estimate the two-body contribution to the cohesive energy®, we used the
spherical symmetric potential recently obtained by fitting the integral cross section
measurements [1]. This fit is a flexible multiparameter Morse-Spline-van der Waals (MSV)
potential including long range dispersion constants C, calculated by Starkschall and Gordon
[19] and Cg by Margenau [20]. The summation over the fcc lattice has been perfor-
med by a method described elsewhere [18]. Assuming the nearest neighbour distance as
Ryns = 7.1 2. u. [15] we obtained for the two-body contribution to the cohesive energy
the value —43).2 cal/mole. For the first-order non-additive contribution we obtained
—8.0 cal/mole, whereas the Axilrod-Teller potential, representing here the third-order
term, gives the value +12.8 cal/mole. Hence the whole non-additive contribution amounts
to +4.8 cal/mole, and lowers the additive cohesive energy by about 1%. Thus, it seems
that the non-additive effects are of little importance for estimating the cohesive energy.
However, if the Axilrod-Teller potential is included in the calculation of solid state proper-
ties, the first-order term should not be neglected.

The authors are very grateful to Professor Wlodzimierz Kotos for numerous discus-
sions and for reading and commenting on the manuscript.

3 The o-H, crysal of the fcc-type lattice, space group Pa 3, lattice constant is ao = 10.04 a. u., the
nearest-neighbour distance is Ry = 7.1 a. u. [15].
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