Vol. A55 (1979) ACTA PHYSICA POLONICA No 3

ON THE CONTRIBUTION OF THE ORIENTATION AND
VELOCITY RELAXATION TO THE ATOMIC LINE SHAPE.
I. MODERATE PRESSURE REGION*

By E. PAauL
Institute of Physics, University of Gdansk**
( Received Murch 14, 1978)

A formula has been derived describing the intensity distribution at the centre of an
atomic line, when the perturbers are rare gas atoms. The formalism given previously by
Bielicz and others has been generalized for the case of an anisotropic potential. The sudden
approximation and the influence of the induced multipole momenta of the radiating atoms
are also discussed.

1. Introduction

It is well-known that, in the low pressure range, the intensity distribution function of
a spectral line depends both on Doppler and pressure effects. If one treats these two effects
independently, the line shape is well described by a Voight profile. On the other hand,
it is known that collisions of a radiating atom with perturbers change its velocity. Therefore,
some correlation exists between the Doppler effect and pressure broadening. The correla-
tion leads to an asymmetry of the line profile. This was pointed out theoretically by [1}—[5]
and observed experimentally by [6]. The asymmetry depends strongly on the mass of the
perturbers, namely, it increases with an increase in the perturbér mass. The theoretical
considerations [1]—[5] based on the simplified assumption that the interaction potential
between atoms possesses spherical symmetry. In other words, such an assumption leads
to the neglection of the reorientation and dealignment effects. Moreover, the collisional
relaxation of the orientation and alignment as well as the higher multipole momenta
of the radiating atom modify the line profile appreciably. These effects change both the
width and the shift of the line and may also give rise to entirely new effects, e.g.
the radiative transitions for some forbidden lines (see Kielhopf and Granier, Granier,
Schuller [7]). This leads to the appearance of some satellite bands on the far wings of the
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line. So far many authors [8]—[10] have taken into account the influence of the relaxation
of multipole momenta on the intensity distribution of the spectral line shape but ne-
glected the velocity change of the radiating atom. In the present paper both effects are
treated together. '

We shall deal with the moderate pressure region, where the pressure broadening is
larger than the Doppler effect, but the binary collision approximation is still valid. How-
ever, the very low pressure region, where the Doppler effect dominates the pressure
broadening, will be considered in a forthcoming paper.

Section 2 contains, the formalism described in [3]—[5] but generalized for an aniso-
tropic potential. In Section 3 we consider the relaxation of multipole momenta in a Liouville
space. On the basis of the classical path approximation, a set of differential equations
has been derived. These equations describe the time evolution of the multipole momenta.
It permits us to calculate the mean value of the relaxation operator which allows one
to describe the intensity distribution of a spectral line. '

In Section 4 we consider the 1/2 — 1/2 transition in the alkali atoms perturbed by
the rare gas atoms when reorientation effects do not occur. The simplest example of
transitions when the reorientation effect takes place, is the 1 — O transition. For this
transition we calculate the mean value of the relaxation operator in the sudden approxi-
mation. This is the subject of Section 5. In Section 6 the mean value of this operator is
calculated also by numerically solving the obtained set of differential equations. The
comparison between the results obtained by both methods is given in Table I. In Section 7
we study the influence of the induced quadrupole momenta on the intensity distribution
of the dipole transition 3/2 — 1/2. The obtained results in Table II show that this contri-
bution to the line shape is negligible.

2. The collisional relaxation of atoms

A comprehensive description of the atomic relaxation, as well as any other relaxation
phenomena, is usually reduced to the investigation of the autocorrelation function U(?),
which is given by

U(t) = Tr {Qe—ik' roxfethxe—theix' ro}, (1)

where ¢ is the density matrix of the whole gas, H stands for its Hamiltonian, r, is the
position vector of the radiating atom, x is the wave vector of light, y is the operator of the
respecfive multipole moment of the radiating atom. The trace is over the states of the gas,
ie. the radiating atom and the perturber. In our consideration we will assume that the
total angular momentum of the perturbers is zero and that they do not have any internal
degrees of freedom. An autocorrelation function of this type is sufficient to describe the
emission or absorption spectra and the longitudinal relaxation of the atomic multipole
momenta, provided that the medium is isotropic. In the higher order radiation processes,
particularly concerning the scattering of light, the description of a spectroscopic experi-
ment is often reduced to calculating these functions.
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The intensity distribution function ;/(w), which is related to the Fourier transform
of the autocorrelation function U(¢) in the following way

CIw) = Re? dt ¢'U(1), 2)
0

is given by the imaginary part of the mean value of the resolvent operator RTf(aw). Since
we assume that the spectral lines are well resolved, we consider only the transition from
the initial level 7, labelled by a quantum number «; j;, to the final level £ labelled by aj,.
We neglect the nuclear spin of a radiating atom, and here j, denotes the total orbital
and electronic momentum, while «, stands for the principal quantum number. The
intensity distribution function of the multipole light with a given J is proportional to

1 ——
() = — — Im R{(0), 3

where x = o~y and J, M satisfy the following conditions
J = iji_jf|9 --.'a l]1+Jfls M = 0: :tla i2, iJ (4)

In the case of an isotropic medium the mean value of the resolvent operator E’?I(x) does

not depend on M. Therefore, we will calculate R//(x) only.

- When the density of the gas is low enough, the basis assumptions of the so-called
impact theory are satisfied. Then coupling between the thermal bath and radiating atom
is not.too strong and the density matrix can be factorized as follows

0 Q5 Qp . 3)
where g, 0, are the density matrices of the radiating and thermal atom respectively. In
this case, as was shown in the papers [3]—[5], the mean value of the resolvent operator
for -the emission spectra is given by the following formula

1 \

RiJ}l(x) = Jd3kogl/2(k§/2n10)J dskée”z(kif/mo) (ekD'nJMs ;c ekoxJM) > (6)

—h —nv(c0)
where mq is the mass of the radiative atom, n is the perturber density and o(kj/2m,)
= Q(k3[2mg) exp (— pk3[2m,) is the canonical distribution matrix. The Liouville space
momentum eigenvectors e,,.;; are defined analogically as in papers [3] and [4] by the
relations

kit = (ko +1)eoerses  Crocarnks = KoCropernrs (7

and
(Chonrms Chgwsm) = 3550 par O (ko — ko), ®

where k, is the momentum operator of the radiating atom k, being the corresponding
eigenvalue. Hence, ¢,y is the eigenvector of the kinetic operator in Liouville space
with the following eigenvalue

W eponan = — (Kot mo+12[2mo)erqperns- ©)
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The collisional relaxation operator f;if(oo) is given here by the following formula
aif(oo)ékokJM = (2”)_3 j d3k19("§/2m1? [Tkk(“iji_)— TAk(“ff f)]ekoxJM
+i(27f)_3 f d3k101/2(ki/2m1) j dsk/léllz(kaz/zmﬁ j dsks@llz(kbz/zmo)

X O(ky—ko—k; +ko)o(e,— &) z Z (- l)z(ji—mi)c(jfji-]; L miM)
mi,my my myg’

X C(jpjid"s my—miM") Cmi TRmp> <mp T impdep e (10)

where k, is the momentum and m, is the mass of the perturber atom, k, g, are, respectively,
the momentum and kinetic energy of relative motion. All the elements of the transition
amplitude Ty, diagonal in m; or m, are equal for the given atomic level and we denote
them by

(m TEmy = T, <mg TLImp> = Ty, Jg)- (11)

It has been shown in papers [3] and [4] that the basic formula (6) can be simplified
by means of two distinct approximations which are valid in different pressure regions.
In the region where the collisional effects dominate over Dopller broadening, the approxi-
mation used in the paper of Bielicz and others [3] is applicable and we have

RI() = 4 [Xy+ (VD217 44 Xy — (@D (12)
where
Xiy = x—nv,(c0)—Kk*[2m,, (13)
and
¥ = n[oi(0)]y L1 (00)]— [o1(00) ]} +16° B, (14)

In the last relation the subscripts § and p’ indicate that two different temperatures are
used to calculate v;,(c0), namely, the actual temperature of gas T and 7" = (1+2m, [m,)T.
The relations (12)—(14) will not change essentially, if we incorporate the reorientation
effects. However, the form of the relaxation operator ;/(c0) and also its average value
v;p(c0) will change, according to the formula (10). The respective computing procedure
is described in the next section of this paper.

3. The reorientation effect

In Section 2 we showed that in the pressure region where the collisional effects dominate,
the problem of finding the line shape reduces to the calculation of the mean value of the
collisional relaxation operator v;,(c0). In order to calculate v;(c0) we have to determine
the time evolution of the multipole operator yx(¢).

Therefore, let us consider two colliding atoms in the space-fixed system(sfs). The
centre of sfs is the mass centre of the atoms and the x-axis is taken along the direction of
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the relative motion (Fig. 1). As many others, we assume that the atoms follow a straight-
-line classical path, thus we have

r = [0Xt—1te)+b*]"2,  sin B(t) = v(t—t,)/r, (15)

o

<y

X

Fig. 1. The space-fixed system sfs

where b is the impact parameter, v stands for the relative velocity, ¢, being the time of
collision. By rotating the sfs around the y-axis through an angle S(¢), we obtain another
body-fixed system (bfs). Note that the interaction potential is invariant under rotation
about the z'-axis and reflections in the x'y plane.

The evolution of the multipole operator x(¢) in the sfs (in the Heisenberg picture)
is given by the following equation in Liouville space

ix(t) = V'0)u1), (16)

zh

z

o®

\
x! Q\x

X

Fig. 2. The body-fixed system bfs
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where V'(¢) is the interaction operator in Liouville space. V'(¢) in sfs is connected with ¥(r)
in bfs by the following transformation

V() = e_iﬁ(t)ﬁyiz(t)eiﬂ(f)]:v7 (17)
so we obtain

i) = e” PO (1) Olvy(p), (18)

A convenient way of introducing the basis is to write it down in terms of Liouville spaca’
angular momentum eigenvectors

e = Z (_I}Ui_mi)c(jfjﬂ; mf‘“mif"l) ijjmf> <ot jimmyl s (19

M,y

where we limit ourselves to the Liouville subspace connected with the giver: 2tomic transition
etz jim;y ~ |oyjpmsy. Expanding y(¢) in this basis

x(®) = J%{XJM(OQJM’ (20)

and inserting it into equation.(IS), we obtain the following final equations
= 3 dioe Bz BV L (D) @
We have used here the well-known formulas

(erms e_iﬁ(t)LyeJ'M') = 5JJ'd}'1M*(ﬁ)> (esar eiﬂ(t)LyeJ'M') = 5JJ'dJJWM(ﬁ)s
and
(e V(Degpr) = S VIF.

Ir order to c-iculate the matrix elements of /(¢) we make use of the Liouville space definition
for a scalar product and we get

VI = 3 (=1)297"C(j,jd s mp—mMYC(j jid s my—mM)

mimys
[V (07— V1"Vt )1, e

where V'™l(x,, j,) and V'™ '(fxf, Jr) stand for matrix elements of the interaction operator
in the usual Hilbert space

Vlmil(“iji) = {a;fm V() | jim;), Vlmf’(“fjf) = <(xfjfmfIV(t) locpjrmpy. (23)

One should notice that the differential equations (21) contain also elements non-diagonal
in the quantum number J. The appearance of these elements is caused by the fact that
higher multipole momenta can be induced during a collision.. To evaluate their influence
on the line shape, in Section 7 we give the respective numerical calculations.
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4. The transition 1/2 — 1/2

In the case of the transition «;j; — opj, when j; = jr = 1/2, the potential is isotropic
in both states and reorientation effects do not appear. As it has been shown in the paper
of Bielicz and others [3], the mean value of the resolvent operator in the impact approxi-
mation is then given by

Di(e0) = (R [ — D)~ iw()]. (24)

where ¢ = ¢,R,/0, U is the mean value of the relative velocity, R,,, &, describe the inter-
acting potential

Vl/z(ozil/z) - Vl/z((xfl/z) = —Smu(b/R,”, vt/Rm)’ (25)

namely the position and depth of its extremum. The functions d(z) and w(z) are given by
d(z) = 2 | doosin[z | dsu(g,5)], w(2) =2 | dog{l—cos [z | dsu(e, )1} (26)
0 0 0 0

and bars signify that they are averaged over the velocity in the following way

~ 2
d() = (54/m)M'* fdz exp [—% (é) :l z7%d(2),
¥ .

w(0) = (54/m)** J dz exp [—% ( é) ] z75w(2). (27)

\
0

The functions d(z) and w(z) have been computed and tabulated by Czuchaj and
Fiutak [12] for the Lennard-Jones potentials (6-8), (6-10), (6-12) and for a certain modi-
fication of the Buckingham potential. As it has been shown in the Fig. 3 [12] for the
Lennard-Jones potential (6-12), the functions d(z) and w(z) do not suffer too strong
changes when averaged velocity as defined by 27). Therefore, the functions d({) and
w(() are sometimes used instead of d({) and w({). The numerical values for d({) and w({)
for the Lennard-Jones potential (6-8) are given in the paper of Bielicz and others [3].

5. The transition 1 — 0

Now we consider the transition aj;, — o j, with j; = 1, j, = 0. The only value for J
is J = 1. From (21) we obtain the following set of equations:

i1 (6) = Vitxu(®—% (Vi — V) sin® B(0) [x1() =21 -1 (D]
1

72

+ (Vi1 — Vi) sin B(r) cos B(D)x10(1);
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ix1-1(8) = Vita -1 +F (Vi = V) sin® B [112(D)~ 11 1(8)]
- 712 (Vi = V%) sin B(1) cos (11000,
ix10(t) = [Vi sin® B() + ¥y cos® B x1o(t)
¥ J—lz (Vi = V) sin B(0) s () [t (1)~ 131 (0]. 28)

Introducing cartesian coordinates

1 1
1) = \‘/—2 11D =x1-10], (0 = \7’2 @+, %0 = X10(0) (29)

we separate (28) into two independent sets of equations

ix, (1) = Vi (0, (30a)

and
ix:(t) = [Viy cos® B()+ V3 sin® B(t)](8) + (Vi = V) sin B(7) cos B(Ox.(H),
ixt) = [V} sin® B(£)+ VY cos? B+ (Vi = V) sin f(2) cos B(t)y,(£). (30b)

The solution of the coupled system of differential equations (30b) is obtainable through
numerical computation only. However, it is generally believed that the result can be
reasonably estimated by means of the so-called sudden approximation, known also as
the scalar approximation which has been introduced by Byron and Foley [11] in the
calculation of the shape of the double-resonance signal. This approximation has been
extensively used in the calculation of the line shape [9].

The sudden approximation is based on the assumption that we may disentangle the
time evolution of the system by neglecting the time ordering of the formal solution the
set (30). Thus, the sudden approximation leads to the following time evolution

t
x(t) =exp[—i [ V'()dt'Iy(—0), (31)
instead of the formal solution
t
x(t) =Pexp[~i | V'()dt Jy(—0), (32)
which is exact. ‘
There exists some doubt, however, whether the validity of the sudden approximation
is well established in all cases of interest. Therefore, we shall compare the results obtained

through direct computation with those given by the sudden approximation to prove
the applicability of the latter for our purposes.
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In the case of the transition 1 - 0, which is considered above, we have the following
simple solution at infinity in the sudden approximation

lllXy( iy OO)‘ fDl 0 0 lllXy( - OO)
Xx(+°o) = exp| +i 0 D, 0 Xx(—'OO) > (33)
(4 ) 0 0 by |-

with the coefficients D; given by

Dy = | Vidt, D, = [ [Viicos®f(t)+Vy,sin® f(r)]dt,

Dy = [ [Viysin®B(t)+ Vi cos® p(]dt. (34
Using the formulas (29) and (33) we can average zio(—00) y10(+0) over -all orien-
tations of colliding atoms with the assumption that the gas is isotropic and

<XIO(_ 00)%10{— ©)oricntation = 1- (35)

Thus, the mean value of the collisional relaxation operator v;,(c0) in the sudden approxi-
mation takes the form

v (00" = 2 i § dbb(3—et P —e P2ty (36)
) _

where {...>, denotes the velocity average.
From the formulas (22) and (23) we obtain

Vi = Vi) = V(e 0) = —ei u(b/RY, vi/RSY),
Vi = Vi(00)— Vo 0) = —el u(b/RY, vt/RY), 37

where we introduce a notation analogous to that used for the transition 1/2 — 1/2, namely
the parameters describing the extremum of potentials (37), where RS, R are their
positions, &', &i? are their depths. Therefore v;(00)* is related to the dimensionless

functions by

0 (00)™% = 7BROY[—d(l, ap ays o3 L = O —iw(l, ay ayy .5 1 — 0%, (38)

where
{ = e R,)[o (39)

and g, a,, ... are the parameters describing the anisotropy of the potential V7%.
Under the assumption that the interaction is of the Lennard-Jones (6-k) type, the

functions d((, as, a,; 1 - 0%, w(l, as, a_k ;1 - 0)™ can be expressed by the functions
d() and w({) (Eq. (27)) in the following way
d(l, ag, a: 1> 0 = 3 [n'd(0)+n"d(C")+n""d(C")],

‘;(C’ aé’ ak; 1 — 0)51‘1dd - _31_ [n’W(C’)+11NW(€”)+71I”W(C”I)]5 (40)
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""" depend only on g, @,. Thus, when k is equal to 8 or 12,
d(...;1 - 0" w(...; 1 - 0)™* do not require additional numerical calculations for
we can use here Table I of Bielicz and others [3] or Fig. 3 of Czuchaj and Fiutak [12]:
For example, in the case k = 12, if we assume the following form for anisotropy
parameters

where the parameters %', "', ¢

as = (& /e ) RIPIRDYS,  ayy = ag(RP[RD), (41)

we have
n' = (anlag) '’ 0" =[(+1lap)2(1+5a5)]7, 0" = [(11+a,:)/2(5+a6)]'"?,
' = ag(agla)’®, {7 = [(1+5ae) (") "*"*/61C,
(" = [(5+ae) (") ""*[61C. (42)

Furthermore, there exist analogous relations between d(r, as, @155 1 — 0)™%,
w(r, ds, @125 1 0" and the functions d(r), w(r) as (40)—(42), where r = & RO/p.
In Table I the results of calculations for d(r, gs, a12; 1 = 0)™% and w(r, as, a;,; 1 — 0)**%¢

TABLE I

The comparison between the values of d(...) and w(...) obtained in a sudden approximation and with the
help of the numerical method

r a1z as 4num gsudd Ad, Ad% whum woudd Aw Aw%

1 | 0.2 0.3 0.946 0.873 ‘ —0.073 ‘ 7.5% | 0925 | 0.876 | —0.049 5%

1 0.2 0.9 1.253 1.187 | —0.066 5% 1594 | 1.329 | —0.265 | 16.5%

1 0.9 0.2 0.519 0.631 0.162 | 31% 0.961 1.049 0.088 9%

1 0.5 0.7 1347 | 1.249 —0.098 7% 1.217 | 1.149 | —0.068 3.5%

2 05 | 07 1.748 1.460 —0.288 | 16% 2.223 1.751 | —0472 | 21%

3 0.5 0.7 1.604 1.632 0.028 1.5% | 2.576 | 2.642 0.066 2.5%
10 0.5 0.7 2.888 2.813 —0.075 2.5% | 3990 | 3.304 | —0.185 45%

made for a chosen sets of parameters in the sudden approximation are given and a com-
parison is made between them and the corresponding results obtained with the help of
the numerical method presented in the subsequent section.

6. The numerical solutions

The set of equations (30) has to be rearranged in order to simplify the numerical
calculations. While the solution of the equation (30a) is simply given by

1() = exp [—i | Vi()dt Tt (— <o), “3)
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the two remaining equations couple two complex functions y(¢), x,(¢£). However, it is
easy to show that they form in xz-plane the vector of constant moduli i.e.

HORM+EOr0 = ¢, (44)
Therefore, we can -express these functions in the following form
2:(0) = esinp()e™D, () = ¢ cos p(£)e*=O. (45)
Inserting this solution into (30b) we get the following set of equations
(?) = —2(Viy = V{iy) sin B(2) cos B(2) ctg [2y()] sin u(t) +(Vi, — V2 [2 sin® B(£)—1],
(1) = (Vi — V1) sin B(F) cos B(2) cos u(t), (46)

which couple two real functions y(¢) and u(¢), where the function u(z) is defined by ‘

u(t) = jt' (Vi = V) sin B(¢') cos B(Hdt —a () +o () +7/2. “7)

Using formulae (43), (45)—(47) and a\feragihg 25 (—0) x.(+00) over all orientations
of colliding atoms we have

(@)™ = (- 2/3) | dbb[3— e ~20¢™]),, (48)
0
where

1= }0 Vidi, D= 3 }O (Vi + Vit
= 3 {cos p(+ c0)-cos [u(+ 00)/2—J(+ 00)]—sin y(+ 00) cos [u(+ )2+ J(+ 0)]},

sin u(t)

sin [2y(0] 6l

J(+00) = J Vii=Vi) ——

Functions y(¢), u(¢) form the solution of the differential set (46) with the following initial
conditions

u(—o0) =0, y(—o0) = —n/d. (50)

So, we find that functions d(_C, G, a4y ... 1 —9_0)'“"“ and ;V(C, a; c;,, vee3 1> 0)™™ can be
treated as a result of velocity averaging as understood in formula (27) over the expressions

d(r, ay, ap, ...; 1 = 0)™" = 1 1'd(r)+% [ do - 0Q sin D,
0

W, Gy, gy .3 1= O™ = 2y'w(r)+4% [ do - o[1—Q cos D], 31
0

where

r=ce, R, o= bRY. (52
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The parameters a, @, ... describe, similarly as in the previous chapter, the anisotropy
of the potential ¥{¥! and in the case of the Lennard-Jones potential (6-12), ag, ay,, 1
have the same form as in the equations (41), (42) and r = a,(@s/a;,)*'® - r. In Table I
the values of d(r, ag, a,,; 1 — 0) and w(r, g a;,; 1 — 0) obtained alternatively by direct
computation and calculated in the frame of the sudden approximation are listed, and also
the following differences Ad = d(...)""% —d(...)"™, Aw = w(...y"*—w(..)™", and rela-
tive differences Ad%, = [Ad[d(...)"™™] - 100%, Aw¥, = [Awiw(...)"™"] - 1009, -are given.
These differences, in general, do not exceed 20 percent, in one special case, however, we
found Ad%, = 31%,. It shows that the sudden approximation, despite its being very
useful and effective in most cases, can nevertheless sometimes lead to serious divergences.
No dependence of 4d% and 4w%, on r or on parameters characterizing the anisotropy
of the potential was found. In such a situation, on the grounds of the calculations perfor-
med, it is hard to say when the sudden approximation leads to reasonable results.

7. The reorientation effect in the 32 —1/2 transition

Up to now there was no need to consider the non-diagonal elements V¥, In equation
(10), since for the 1 — O transition there exists only one value of J. Also in the 1/2 — 1/2
transition these elements do not play any role since. this is the case of an isotropic system.
The simplest case for which these non-diagonal elements become is the 3/2 — 1/2 transition,
for which J is equal to 1 or 2. The physical picture involved here is the transformation
of the dipole momentum into the quadrupole momentum during the collision and vice
versa. In other words, we want to take into account the alignment and dealignment in the
effect of a collision. For this purpose we will solve equation (10) in the scalar approximation.
Although the discussion of the previous chapter shows that the scalar approximation breaks
down in some cases, still we hope that, in most cases of interest, it will not distort the

results drastically.
As in the case of the 1 — 0 transition, we introduce the following set multipole com-

ponents
25320 = DD+ JCJ—M(t)]/\/E . (53)

In terms of these variables, the solution of (10) in the sudden approximation is reduced
to the following form

_ _ _ (+) (D N (';) _
153+ 0) = exp (iD;)7(— o), (ig)gg) - exp| i D:)] (&{_3),

A0 [ (Ps N\ [x1(=0)
(x‘z'l’(oo)) - [‘ (NZ Dsﬂ <x‘2?<— oo)) ’
X10(©) D¢ N, N, X10(— )

X20(0) | =exp|i| N5 D; Ns X20(—0) |, (54)
X(z;)(oo) Ny N5 Dg X(z;)(—oo)
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where the elements D;, N; are given by the following integrals

Dy = — _}; Vidt, D, = — _]‘; [V, sin® B(t) + V3, cos® B(2)]dt,
Dy =Dg = — _}; {2 VA[1+cos® B(t)]? + Vs, sin” B(t) cos” B(t) +2 V3, sin* B()}dt,
Dy = = § [V cos™ B+ V3 sin® 0
D= — _}; (V2 cos® B(1) sin® B(£)+ Vi, [1—4 sin® B(2) cos® B(1)]
+3V5, sin? B(¢) cos® f(1)}dt, Dg= — i [V, sin? B(2)+ VY cos® B()]dt,
Dy = — _f; (2 V3 sin® B(2)+ 3V, sin? B(t) cos? f(2)+% V5,[3 cos® p(1)—11°}dt,
N, = — _}; V, cos p(t)dt, N, = — _}; (V34 cos p(t) [cos® B(H)—sin® B(#)]

+4/3 3V3; sin® B(#) cos® (t)}dt,
Ny = — }o {\/3 V34 sin? B(t) cos B(H)+5 V5u[3 cos® B(H)—1]}dt,

N4~ . ~N3/\/§9

Ny = — f {—\ég V2 sin? B(1) [1+cos? f(1)]— /3 V3, sin® B(t) cos® B(t)

+ \/Tg Vs, sin? f(¢) [3 cos® ﬂ(t)—l]} dt. (55)

Using formula (22) we can express all elements of the potential V}}", by the following
differences :

V32— VA[2) = V3, V3=V 1)) = Vs (56)

Substituting them into integrals D, N; we have that Dg = D,. If we assume that the
gas is isotropic in the case of a dipole transition we have the following expression in the
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sudden approximation

(= O£+ 0 ertnton = | et [i (%1 Zz\;:)] " ((1))

D Ny —N3/ /3
- /D, N, 1 6 3 3/\/
+(1 0)><exp|j( )]x<>+(1 0 O)xexp|i| N, D¢ N
i 0

2 DS —
—N,3//3 Ns Dy
rl' I
x |0}

7
o

First two terms can be transformed with the help of the well known identity

eoli(® B\ (1O re (% PNear 58
P b ——a___OlCOS r\b _a) (58)

where I' = (¢2+b?)!/2 , In order to transform the remaining term we use the fact that
the matrix

O N3 —‘N3/\/§
W = N3 0 N5 s (59)
""Ns/\/—g N5 DS_-DG_

is hermitian. Therefore, there exists a unitary transformation T, which leads W to the
diagonal form

Ay 0 0
T"'WT =0 1, 0. (60)
0 0 Jy

Introducing the following coefficients
1
g = —3%(Ds—Dg)*—§ (Dg—Dg) (N%— 5 Ni_)'*‘ \7§ N3N,

p =%(D8_D6)2+%N§+%N§7 (61)
and

3/2

cos ¢ = |q|/p*?, | (62)
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we have that
Ay = —2sign (g)\/p cos (¢/3)+(Dg— Dg)/3,
A = sign (g)y/p [cos (¢/3)++/3 sin (¢/3)]+(Ds — De)/3,
sign (9)y/P [cos (#/3)—+/3 sin (¢/3)]+(Dy— De)3. (63)

Using the above relations we can express E(oo)s“dd by the functions

e
w
Il

o)

d@r, ay, ag, ...; 3/2 = 1/2)™9¢ = %—f doo [cos Iy sin%(Dy+D,)+cos Iy sin & (D, +Ds)

0

(D1—Dy) . (Dy—D5)
- “sinIycosi(D;+D,)+ —
+ or, m i 7 (D4 2) ar,

sin I', cos 3 (D4 +Ds)

+(T} 1)2 sin (Dg+4,) +(T12)2 sin (Dg +'12)+(Ti3)2 sin (Dg +/13)j| 5

w(r, a, ay, ...; 3[2 > 1/2)™4 = 2 f doo [-3—003 I'ycos 2 (D;+D,)

D,—D D,—D
—cos I'y cos 5 (Dy+Ds)+ (D: = D) sin I'y sin 2 (D, +D,) + (D+=Ds)
' 2F1 2F2

xsin I', sin 3 (D4 +Ds) = (T1)* cos (D +4;) = (T12)* cos (D+1s)

~(Ty3)* cos (Ds+ /13)] , (64

averaged over the velocity (see formulas (27)), where T7;, as elements of T, are given by

- [1 (AiNs—szi/ﬁ)2+<z__?2—.N§>?]*”{ -
N3(Ns—24/y/3)
and
ry = {% (D1—D2)2+Nf}1/2a I, = {% (D4‘“D5)2+N§}1/2- (66)
The parameters g, r, which appear in formulas (64), are respectively
e = BIRS, 1 = sXPRYV, ©

where R$/? is the minimum position and &2/? is the minimum depth of the potential V3/3

(see equations (56)). The parameters a,, a,, ... describe the anisotropy of the potential V5.

Now we want to establish the influence of the induced momenta which appear during
the collision, on the line shape. Therefore, we calculate the functions d(r, a, ay, ...;
3/2 > 1/2) and w(r, a;, a, ...; 3/2 — 1/2) neglecting these induced momenta. In other
words we assume that all elements of the operator ¥, nondiagonal in quantum numbers J,
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are equal to zero. Thus, in the sudden approximation we have

d(r, ap, ag, ...; 32 = 1/2y9® = 2 [ doo(sin D, +sin D, +sin Dy),

Oty §

w(r, ap, ag, ...; 32 = 1/2)"%® = 2 | dop(3—cos D; —cos D,—cos Dg),  (67)

Cey g

where D,, D,, Dg have the same form as in equations (55). In Table II a comparison
is made between the values of d(...) and w(...) calculated for the Lennard-Jones potential
(6-12), respectively, with and without the contribution of the induced momenta. Also

TABLE II
The contribution of induced quadrupole momenta in the dipole transition 3/2 — 1/2

r a2 | as de.) . | di.)® Ad Ad% | w(.) |[w(C.)P®| Aw Aw%

| | | T }

1 ‘ 20 | 5 2.216 2304 | —0.088 4.0% 2267 | 2.196 | +0.071 3.1%
1 ‘ 20 3 1.612 1.479 | +0.133 8.3% 1.532 1.485 | +0.047 3.1%
1 10 3 1.913 1.893 | +0.020 1.1% 1.755 1.673 | +0.082 4.7%
1 5 3 1.896 1.975 | —0.079 4.1% | 2.124 1.907 | +0.217 |10.1%
1 5 2 1,702 1.679 | +0.023 1.3% 1.533 1.502 | +0.031 2.0%
2 5 2 2.249 2.305 | —0.056 | 2.5% | 2790 | 2.739 | +0.051 1.8%
0.5 5 2 0.919 0.997 —0.078 8.5% 0.991 0.887 +0.104 [10.5%
0.1 5 2 | 0.097 0.086 | +0.011 |11.3% | 0.709 | 0.721 | —0.012 1.7%
0.05 5 2 | —-0.016 | —0.023 | +0.007 |409 0.648 | 0.659 | —0.011 | 1.7%

the following differences Ad = d(...)""%¢ —d(...)*™¢ " ®, Aw = w(...)"*% —w(...)™% ® and
the relative differences Ad%, = [Ad/d(...)*"%*] - 100%, Aw%, = [Aw/w(..)*"*] - 100%, are
given there. The values of the relative differences are computed up to an accuracy
of +0.2%, the only exception being Ad%, for r = 0.1 computed to an accuracy of +2.5%
and Ad% for r = 0.05 established with a 109, accuracy. As it is clearly seen from this
table, the relative differences lie in a range of a few percent which show that the influence
of the induced momenta is negligible (these differences are generally smaller than those
given in Table I which correspond to the divergences between values respectively computed
and obtained from the sudden approximation). However, 4d% becomes significant for
small 7’s and the induced momenta can contribute considerably here.

8. Summary

In Table I the value for d(...) and w(...) are given — calculated in the sudden approxi-
mation and obtained numerically in the frame of the classical path and impact theory
approximations. In most cases the corresponding values differ by a few percent, however,
there are individual incidences where the differences is greater than 109{. This argues
that there are situations where the sudden approximation fails. In this paper only values
for r > 1 were investigated, since for small r’s the numerical method becomes too rough.
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Computations were performed for the 1 — 0 transition but the conclusions made above
can- be easily generalized for other transitions.

The second problem we attempted to solve is the influence of induced multipole mo-
menta on the spectral line shape whose appearance is signalized by non-diagonal elements
arising in equation (21). However, as it is clearly seen from the calculations obtained
for a 3/2 — 1/2 transition in Section 7, this contribution is negligible in most cases of
interest. It should be emphasized that the calculations were performed in the sudden
approximation and for r > 1 the differences d(...) and w(...) are smaller than the accuracy
of the method itself. These differences grow significantly when » decreases but the lack
of information concerning the validity of the sudden approximation method for small #’s
gives no possibility for establishing whether this behavior is caused by the influence of
induced momenta or whether it is only a phantom produced by an inadequacy of the
method.

The author is very much indebted to Professor J. Fiutak whose inspiring criticism
contributed greatly to the present work.
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