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The problem of symmetric and antisymmetric dynamical Rayleigh scattering of light
by interacting systems of anisotropic molecules is discussed, the symmetricity and anti-
symmetricity bearing on the tensor of light intensity as well as on that of the optical (linear
and dipolar) polarizability of the molecule. The resolution of the molecular polarizability
tensor into three irreducible parts of various orders, namely an isotropic part of the zeroth
order, an anisotropic part of the sécond order, and an antisymmetric part of the first order
leads to the emergence, in the scattered light spectrum, of a number of spectral (Lorentz
type) lines, related with three orders of relaxation time: the zeroth (zp, translational relax-
ation tims), and the second and first (respectively 723 and 71y, rotational relaxation times),
the number of these lines depending on the molecular symmetry in the case of each individual
molecular system.

1. Introduction

Light scattering is one of the many optical effects providing the basis for methods
whereby the parameters characterizing atoms and molecules statically and dynamically,
as well as those characterizing their mutual inferactions, can be studied profitably [1-3].
The problem of integral light scattering by molecular liquids has been discussed in detail
by Kielich [4, 5]. The spectral theory of light scattering by non-spherical molecules was
developed by Steele and Pecora [6] applying results of Steele [7] concerning the general
statistical theory of such systems. Pecora [8] then extended the theory by having recourse
to model approximations of translational and rotational diffusion. Theoretical studies
were intensely stimulated by the discovery of a fine structure in the depolarized spectrum
[9, 10] due to certain factors of a hydrodynamical nature [11, 12].

* This work was carried on under Research Project MR. 1. 9.
- ** Results reported in part at the Conference “Lasers in Chemistry”’, London, May 31 — June 2,
1977; Conference Digest, pp. 404-409.
*%% Address: Zaklad Optyki Nieliniowej, Instytut Fizyki, Uniwersytet A, Mickiewicza, Grun-
waldzka 6, 60-780 Poznan, Poland.
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In his theory of Rayleigh scattering and the Raman effect, Placzek [13] first defined
the three mechanisms of light scattering: isotropic, anisotropic, and antisymmetric,
related with three irreducible parts of the (linear and dipolar) optical polarizability tensor
of the molecule.

Our present results are an extension, to dynamical scattering, of those of Kielich [2, 14]
derived from his treatment of the three scattering mechanisms in a Cartesian basis. Our
results are expressed in a Cartesian as well as a circular-cylindrical basis permitting
their direct application to the scattering of linearly polarized and circularly polarized
light. Essentially relevant here is the relationship established between the antisymmetric
part of the polarizability tensor and rotational relaxation times of the first order 7.

2. The symmetric and antisymmetric part of the scattered light intensity tensor

We assume the electric field of incident light (monochromatic wave) existing at the
centre of a molecule p (scattering volume V), distant by ?p(to) at the moment of time ¢,
from an arbitrarily chosen origin of coordinates, in the form:

/

E(P)(;.'p, tO) — E’gp)e‘-i[woto—ko 'rp(to)]’ (1)

with Egp) the amplitude, w, the vibration frequency, and EO the wave vector.
In the electric-dipole approximation, we define as follows the time-dependent tensor
of scattered light intensity [2]:

wo\* - ®
Li®) = (7) KM(r, t)M (1, to+ 1)1 @)

where we have introduced the notation:

N >
M, t0) = 3. dfP(1g)d 172000, ©
1

p=

d®(t,) being the i-component of the dipole moment, induced in molecule p, whereas Ak
is ‘the difference in wave vectors of the incident and scattered light; summation extends
over all N molecules of the scattering volume. In Eq. (2), the brackets {...», denote
averaging over the time 7, and the statistical ensemble. -

The scattered light intensity tensor (2) has the properties of a polar Hermitian tensor
ofrank 2ie. I; = Iﬁ Thus, its symmetric part is real and its antisymmetric part imaginary
[15]; they are defined as:

Ilgjzt)(t) = 3 {I;; 1}, )]

the superscripts () denoting, respectively, the symmetric part (+) and antisymmetric
part (—). Accordingly, we write the tensor of scattered light intensity in the form:

Li(®) = IO+ I57(). @)
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In the case of optically anisotropic molecules, the electric dipole moment is given,
in the linear approximation (in the absence of molecular redistribution [4, 5]), as:

dP(ty) = a?;co[gp(tO)]Ek(tO)a (6)

where o;;°[2,(%0)] is the (dipolar and linear) optical polarizability tensor of molecule p,

Q,(t0) stands for its orientational variables at the moment of time t, referred to the labora-
tory, and the superscript w, expresses the fact that the polarizability is a function of the
frequency w, of incident light. The lower index k in (6) is underlined to express its contra-
variancy with respect to the non-underlined indices.

On insertion of (3) and (6) into Eq. (2) and applying the definition (4), we- write:

IP(0 = I+, (M

where

0

4
JPO =7 (%) N{e [0 [Qu(D]EL(OE (1)
[91(0)196”°*[91(t)]E1(0)E ()} exp [idk - () —F(O)]) ®

is the “self”’-type part, corresponding to incoherent scattering, whereas
I = (%) NN —1) {eiz’[24 (0)]06“"’*[Qz(t)]Ek(O)E;k ®
2 [21(0)] 1”°*[Qz(t)]Ez(0)Ek (O} exp [idk - (Fo()—F (O] ®

is the “distinct™ part, corresponding to coherent scattering on' statistically time- and
space-correlated molecules. Since (8) and (9) are already time-averaged over ?,, the brackets
{...> now denote averaging over the statistical ensemble only, and we have adopted #, = 0
within the statistical average. ’

3. Time-dependent distribution of symmetric and antisymmetric light scattering by a system
of anisotropic molecules

In order to calculate the statistical averages occurring in Eqs (8) and (9), we have
to introduce van Hove’s [16] space-time functions of the “self” type, GS{I_él(O),ﬁl(t), t}
and of the “distinct” typs, Gd{fll(O), R,(1), t}, where R stands for the configuration of
the molecule (the sets of its positional variables r and orientational variables Q with respect
to the laboratory basis). Van Hove’s “self” function defines the probability of finding
molecule 1 at the moment of time ¢ in the configuration I_él(t) if its configuration was
R,(0) at the moment of time ¢ = 0. The “distinct” function defines the probability of
finding molecule 2 at the time ¢ in the configuration ﬁz(t) if, at # = 0, molecule 1 was in
the configuration R,(0). We now proceed to introduce certain model approximations
to simplify further calculations. We make the following assumptions:
(a) The translational and rotational motions of the molecules are mutually independ-
ent. This permits the separation of variables: Gs{fil(()), f(l(t), 1} = G,{Q.0), Q,(), t},
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%{7’1(0), 71(8), 1}, and the function G{Q,(0), Q,(¢), t} can be expanded in a series of
Wigner matrices [6] with expansion coefficients of a form resulting from the assumption of

diffusion of the symmetric top type

2J+1 - L
G.{2,(0), Q,(0), t} = Z 87:_2 ¢ ”MDlch[Ql(O)]DIJ{M[Q1(t)]= (10)

J .M, K
where the M-th rotation relaxation time of the J-th order is given by: T = J(J+1)D}
+M2(DX—DY), with D% = D5+# D —the diagonal elements of the rotational dif-

fusion tensor. ,
(b) The position of the molecule changes by way of translational diffusion; so that the
function 4.{r.(0), ¥,(t), ¢} fulfils the equation of translational diffusion in Smoluchowski’s

form:
2

1 r
g, 1) = (@nD""? exp {— ZD—Tt} , an

where r = |Fy(t)—7,(0)| and D" is the translational diffusion coefficient.

(c) The molecules interact with one another at the moment of time ¢ = 0 only, whereas
at ¢ > O they are statistically independent and obey the laws of translational and rotational
diffusion. This approximation is generally referred to as that of the Vineyard convolution
[17] since, here, the van Hove “distinct” function is defined by the convolution:

Ga{R(0), Ry(1), 1} = | ¢P{Ry(0), Ry(0)}G,{R,(0), Ry(), 1}dR,(0), (12)
where g@{R,(0), R,(0)} is the pairwise configuration function at equilibrium.
The function G4{R;(0), R,(?),t} can be expanded in a series in Wigner matrices,
as follows [18]:
Ga{Ri(0), Ro(D, 1} = Y, V@I +1) (2, +1)
J1.K1,M
J2,K2,M>
X gt ke (T2 —71(0), 13D 6, [ Q3 (0)]DR s, [ 237 (D], (13)

where Q}', Q3! define the orientation of molecules 1 and 2 in a coordinate system the
z-axis of which coincides with the vector r,(¢)—r,(0). Similarly, we expand the function

gP{R,(0), R(0)}:
RO RO} = T V@I D) @I +1)

J1,K, M1
J2,K2,M2

The expansion coefficients in (13) and (14) are mutually related by way of the Vineyard
approximation (12), as follows:

‘gy?l‘ll‘LKzMz{;Z(t)—?l(o)’ t} = CXp {_t/TJzMz}

X § 8K kanes (F2(0) — F1(O)}F{72(0), Fo(1), 13dF2(0). (13)
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When calculating the averages occurring in (8) and (9) it is convenient to go over
from Cartesian polarizability tensor components to spherical components (irreducible
form) with simultaneous rotation to the molecular coordinate system. The transition is
defined by the following transformation:

af[20] = Y ciF D [Q:1(0)]aY, (16)
= - JeKi,My T
the c{{"** being transformation coefficients leading from a Cartesian tensor of rank 2 to

a sphencal tensor, irreducible with respect to the three-dimensional group of rotations.
By having recourse to the assumptions (a), (b), and the transformation (16), as well
as the orthogonal properties of the Wigner matrices [18], we obtain Eq. (8) in the following

form:
o+ L (@0 N . 1
Jip (D=7 e Nh(f)_ T+1 exp {—t/tsy}

J.M,K

x 571 (el e BN E; (0 % i el T E(O)E¢(1)}, a7

where A(t) = exp { —4k>D"t} = exp {—t/t1}, 1771 = Ak2DT being the translational relax-
ation time. When calculating (9) we have to apply, in addition to the assumption (c)
and the expressions (13), (15) and (16), the following transformation [18]:

D@01 = ¥, D[ 24(0)1DR[221], (18)

leading from the coordinate system attached to the pair of molecules (index 21) to labo-
ratory coordinates, as well as the following expansion [18]:

exp (idk - ¥) = ¥ i’(2J +1)j,(4kr)D}o[ 2217, (19)
J

where the j(Akr) are spherical Bessel functions of order J.
We now have from (9):

(=R (27 +1)

: 4
dIg_;t)(t) =% <%> Nh(1) exp { —t/Ts,um,}

poled  N@IHD @1+ D)
J2,K2,M>3, Nz
aneeanfdy LN I, TR » .
Tty iy (Kll X, 0)(_ N, -N, o) 4nefg§{3MzN2M2(r)
xjy(dkr)r*dr{ci ¥ el GO E(O)ES () £ ] e T E(OE ), (20}

Jl J2 J p le J2 J . .
B | = N/¥). In the
where <K1 _K, 0> and <—N1 _N, 0 are Wigner 3-J symbols (o = N/V). In the
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limit Akr < 1 (short-range correlations), we have exp {iAI_E -7} & jo(dkr) = 1 and Eq. (20)

reduces to:
4 2 1
o
(+) ¢ %) Nut e —t/t
0 = <c> @ 2741 P (e
J.M1,M2,K
< EDEDL, 1 c%)K C%)K* E(O)EX(H)+ e§PRe (J)K*El(())Ek(t)} @4))
where
T, = ) -y Ano | gv-pr, - (r*dr (22)
1Mz 2J+1 s
N Y .

is Steele’s radial—angular correlation parameter [19]. For large intermolecular distances
one has lim g_ M1 NMz(r) 0 for J#0; the expression (21) vanishes, and only “self”-type

r—-o

scattering (17) remains. In the case of isotropic molecules J = N = M, = M, = 0;
the parameter

ISy = 4ng ff {Zoo) = L}r2dr . @3)

is related with the radial correlation function of Zernike and Prins [2], and the following
limiting condition: lim gqo(r) = 1 holds.

The coefficients (16) transforming a Cartesian tensor of rank 2 to irreducible represen-
tation are given after Varshalovich et al. [18]. To us, of interest are the products of those
coefficients which intervene in the expressions (17) and (21). In the Cartesian basis

(iaja ka = X, Vs Z), we have:

(0)0 0)o* _ 1
Cik” Cji =3 5ik51b

Z cf e (I)K* =7 (61011 — 6l )»
Z C(Z)K (Z)K* =3 (5ij5kl+6i15kj)—%' 0l j1> 24
whereas, in the circular-cylindrical basis (i, j, k, [ = 0, +1):

i+j
0)0 (0)0% (—1)
c,(_k) cg._,) = b

1K
Z c( KSR = 18,00 — 164,

i, —kéj, =1

(2)K (2)Ksx 1 (_I)Hj
Cik” Cj1 = 7 (0;j00+0udy;)— - 3 i, 10, ~1- (25)

K
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In (24), we bave omitted the underlining of indices denoting contravariancy as irrelevant
in the Cartesian though of importance in the circular basis.

The incident light intensity: of;(f) = % Eq,Ey ;¢ is of the form of a polar Hermitian
tensor of rank 2. As done above, Eq. (4), we define its symmetric oI ")(r) and antisym-
metric OI,-(j')(t) parts. On applying Eqs (7), (17), (21), (24) and (25), we obtain the symmetric
and antisymmetric parts of the intensity tensor of scattered light:

(A) in the Cartesian basis (i, = x, y, 2)

L) = [A(®)+ Aanis() — Aanmis(D] o150+ [3Anis(®) + Aanms(D]835 o1 (0),
IF(®) = [As() =5 4ans) + Aaneis®] o155 (26)
(B) in the circular basis (,j = 0, +1)
I57(0) = (= [ Ax()) = 24 aas(®] oI (0)
+[3Aans(t) + Aantss(®)10:5 oI1(D) +[3Aanis(D) — Aawris()] oI - (1)

I i (1) = (— D[ As(t)— 24 ms(D)] ol 51_ () —[34ans(D— AANTIS(t)] ol (—_i,) _ D). 27

The molecular scattering factors of Eqs (26) and (27) are of the form:

1 { %o ¢ ~(0);2 -0
Aw(t) = 3<7> Nh() 1857 *{1+Tgo}, (28)

o\
Apnais(t) = 35 <”(‘:9) Nh(1) E &ﬁ)&ﬁ)* exp (—t/Top) {Opere + 1 I%I’M}a 29
MM

. wo\* )
Apntss(t) = (f) Nh(®) Z &5a5P™ exp (—t/t1a) {Oaam+ Tapmhs (30)
Mo

with the radial-angular correlation parameter I'};,, given by (22). In the limit » - oo i.e.
at zero intermolecular interactions the molecular factors (28), (29) and (30) reduce to
their “self” form.

The time-dependence of (26) and (27) reduces essentially to that of the molecular
scattering factors (28)—(30). On going over with (26) to integral scattering, the results

take the form of earlier ones [2, 14].

4. Linear optical polarizability and its antisymmetricity

The results derived above — Eqs (26) and (27) — enable us to carry out a discussion
of the spectrum of scattered light (applying the well known Fourier transform procedure)
for linear as well as circular polarisation of the incident light beam and various geometries

of observation.
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The molecular scattering factors are related with the square of the optical polariza-
bility of the molecule in the spherical basis. As is well known [18], a tensor of rank 2 resolves
into three irreducible parts of the zeroth, first and second order, respectively, so that
each of the molecular scattering factors is related with the corresponding order of irreduci-
bility of the polarizability tensor of the molecule:

~(0)12 ~(2)2 1 (12
A ~ 10‘% )l s Aans ~ Z I“gn)l ,  AanTs ~ Z lagu)l s (31
M M

simultaneously dictating the order of the relaxation time for each of the factors. Thus,
Ay is related with the translational relaxation time 7y, Aawis and Auyms With the rota-
tional relaxation times 7,y and 7, respectively (for small molecules).

The linear dipolar optical polarizability of the molecule is o’ (o> = o (wo)). Far
from absorption, the tensor is Hermitian, o3> = a’*, i.e. its symmetric part is real and
its antisymmetric part imaginary. Quantum-mechanical perturbation calculus leads to
its frequency-dependence in the Kramers-Heisenberg form:

OC,-k(CDo) — _1_ z {(di)mk(dk)km + (di)km(dk)mk} , (32)

h Dy + o WD, — Do

where % is Planck’s constant, (d,),, are matrix elements of the electric-dipole transition
between the states m and k, and wy, is the transition frequency. With (32), we obtain
the real and imaginary part as follows:

’ 1 wkm
iy (@o) = . Z m (@)@ mie + ()il Aidiam ) » (33)
k
P 1 (05
Aiawo) = N z a—)z—:‘z‘{(di)km(dk)mk—(di)mk(dk)km}s (34)

k

(ik) and [ik] denoting, respectively, symmetricity and antisymmetricity in the indices i, k
whereas “prime” and “bis” denote an even, or odd function of the frequency w,. In
irreducible representation, Eq. (32) permits the resolution of the polarizability tensor
into the three parts: &2 rank) — &®,a™", &*. Eqs (33) and (34) lead to important
time-inversion properties.

The real part of the polarizability tensor, o, is a polar tensor of the type i (symmetric
under time inversion), i.e.

Of(lik)(_wo) = Of(lik)(a’o)» (3%)
whereas the antisymmetric part oy, is a polar tensor of the type ¢ (antisymmetric under
time inversion):

Aha = o) = —0igig(@o)- (36)
In general, the polarizability tensor has the following property:
(o) = e — o). (37
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If time inversion is absent in the system (molecule), the polarlzablhty tensor is symmet-
ric and real: o (wo) = ag{w,). With regard to the manner of adjunction of time inversion
to the set of directional symmetry elements (rotations, reflections, reflection-rotations,
spatial inversion) constituting the point group G, one distinguishes three groups [20, 21]:

Gz = G,xR, G, G;=G,+{G,~G,}xR. - (39)

Above, G, is a sub-group of the group G,, and R the time-inversion group (unit element
and. time inversion R). Groups Gy are referred to as non-magnetic classes (they rule out
the presence of a permanent magnetic moment); groups G, are referred to as classical
magnetic classes; and groups G; in which time inversion- R occurs in a form coupled
to elements of the group G, not belonging to the sub-group G, are termed ‘magnetic
classes.

Tensors of the type i (symmetric under time inversion) can exist in all 32 non- magnetic
classes Gy, in all 32 classical magnetic classes G,, as well as all 58 magnetic classes G;.
Tensors of the type ¢ (antisymmetric under time inversion) can exist only in the 32 class1ca1
magnetic classes G, and 58 magnetic classes G, [20, 21]. With regard to the property
of c-type tensors, the antisymmetric imaginary part of the optical polarizability tensor
of the molecule can be non-zero only in one of the 90 magnetic classes (G, or G;). This
Is so because the relation (36) holds for molecules belonging to the magnetic symmetry
classes. A molecule can fall into the latter category owing e.g. to internal magnetic pertur-
bations, such as spin-orbit coupling [22].

In the general case, the (linear-dipolar) optical polarizability tensor of the molecule
depends moreover on the wave vector of incident light. At weak spatial dispersion; we
have [2]:

(g, ko) = i @0) + e @oYhgr + .. . (39)

Since the tensor (39) is Hermitian, its real part is symmetric and its imaginary part anti-
symmetric in the indices i, k. Hence, we write the real part as:

0Lz (@0, Eo) = Uty (@0) + MGy @o)kor+ .-y (40)
and the imaginary part as:
(@0, Ko) = affn(@0) +ip(@o)kor+ ... (41)

Spatial dispersion (39) leads to natural optical activity of the molecules. In isotropic molec-
ular systems (liquids and gases) free of external orienting perturbations, the tensor Nia®o)
is related with the magnetic-dipole contribution to electric- -dipole polarizability [23, 24].

The tensors have the following properties: oc(,k)(a)o) and nyw,) are polar, of type i,
whereas «/;(wo) and n(,k)l(wo) are polar, of type c!. Spatial dispersion thus engenders
an antisymmetric part in the polarizability tensor. Likewise, an externally applied magnetic
field can engender an antisymmetric part in the case of “non-magnetic” molecules even

! In Appendix we discuss the tensors ac(lk) (wo), o'[,k] (we) and n[lk]z (wo) for various molecular symmetry
classes.
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in the absence of spatial dispersion (magneto-optical activity). The optical activity tensor
fijzqr has the following irreducible componenis: #(3 rank) — 3D, 733 540 the super-
scripts 3, 4 denotlng partly antisymmetric and completely antlsymmetrlc representation,
respectively.

The preceding discussion shows that the antisymmetric part of the (linear-dipolar) optical
polarizability tensor can differ from zero for molecules with internal magnetic perturbations,
or at spatial dispersion (magnetic dipole case). Another factor, also leading to antisym-
metricity, can reside in an external static magnetic field (Faraday effect). In this work
we have restricted ourselves to the electric-dipole approximation; in general, electric-

-quadrupole and magnetic-dipole radiation [24] have to be considered as well.

5. Conclusions

The form of the expressions (28)—(30) derived by us for the molecular scattering
factors is strictly related with the model assumptions made, namely that of translational
and rotational (axial) diffusion and that of the Vineyard convolution. The latter assumption
modifies the spectral line intensities only (compared with the spectrum of non-interacting
molecules), leaving unaffected the linewidths.

Thus, the rotational relaxation times of the “self”” and ““distinct” parts are the same.
Albeit, the problem is dealt with otherwise within the framework of the Keyes—Kivelson
[25] theory, which is based on Mori’s molecular-statistical fluctuation theory [26]. We
made use of Vineyard’s approximation in the above considerations, it being our sole aim
to draw attention to the problem.

In this paper, we have left unconsidered the ellipticity effect of scattered light due.to
optically active molecules resulting from the mixed terms & #7*? (isotropic) and &®7®
(anisotropic) [23, 27]. As to the effect of intermolecular 1nteract10ns on the spectrum of
scattered light, we reduced it to simple calculations of the Vineyard approximation.
Recently, the problem has been studied in detail by Gierke [28] and Bertucci et al. [29],
albeit not taking into account the antisymmetricity of polarizability.

Apart from the preliminary measurements of Maker [30] for hyper-Rayleigh scattering,
there is as yet a lack of complete experimental spectral studies of linearly and circularly
polarized light for Rayleigh scattering by liquids. It is our hope that the present results
provide convincing proof of the utility of undertaking extensive studies of dynamical
Rayleigh scattering for both the linear and circular state of light polarisation.

One of us (K.K.) wishes to thank Dr. R. Zawodny for his valuable discussions and
remarks.

APPENDIX

Tables I, II and III contain the non-zero components of the irreducible tensor &p
and 755" ' corresponding to the i-type polar Cartesian tensor %k c-type polar Cartesian
tensor oc[,k] and polar Cartesian i-tensor #{uy for various molecular symmetry classes.
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TABLE I

Components of the spherical tensor a:” ) for the polar Cartesian i-tensor oe(,k) of rank 2, symmetric in the

indices 7, k, for various (non-magnetlc and magnetlc) molecular symmetry classes

Symmetry class
(international symbols)

It
|
[

2, 2, m, m, 2/m, 2[m, 2/m, 2[m

Non-zero parameters
, A0
%

Spectral lines L]M(Aw)
in Rayleigh scattering

%(0) :
&g ) = —\7'5_ (_“xx“‘“yy‘l‘“zz)s

a(2) __1
0y = — Gy Tyy—2 55),
16

222, 222, mm?2, mm2, 2mm, mmm,

mmm, mmm, mmm

’5‘91) = —®xy—1 0y,

&(12) = wxz+i“y2s .

&izz) = % Oy —Oyy~2 i Cyxy),

&;2) = — % @xx—Cyy+210yy)

(0 ! (Ox 0y +02,2)

Qo = o (U Ty +&zz),

0 a3

2 1

oy ) = -'\7_6: @xxtoyy~20,,),

&5_22( = - ‘% (“.;cx_'“yy_ 2i “J;?y)s

AP = — L Oy + 20 0ty)

“5(0) L

Gy = K/—g‘(“xx'l'“yy"”“zz)y

&) = 'i—‘(“xx’i'“ —2azz)
[ \/6 Yy ’

&Sé) =S &(22) = % (Cxx—"0lyy)

Loo (dw),
Lo (dw),
L2y (dw),
Lys (dw)

Lo (Aw),
Lo (Aw),
Ls: (dw)

4, 4, 4, 4, &m, 4fm, 4lm, 4m, 422,
422, 422,_4mm, dmm, 4mm, 42m,
EZ;n, ZEZ, ZZ_m, _Allnjmm,_é_l/mm@,'
Z/mln_é, 4fmmm, 4/mmm, 4/mmm,

3, 3, 3, 32, 32, 3m, 3m, 3m, 3m,
3m, 3m, 6, 6, 6, 6, 6jm, 6/m, G/m,
6/m, 622, 622, 622, 6mm, 6mm,
6mm, —6m2, ng, _6m2, 6_m2, 6/mmm,
§lmmm, Gfmmm, /mmm, 6lmmm,
6/mmm

- 1
“f)o) = v§_(2“xx+“zz)’

- 2
“gz) = —'\7-6— (@xx—0zz)

23, m3, m3, 432, 432, 43m, 43m,
m3m, m3m, m3m, m3m

Loo (4w),
Lo (dw),
L;; (Aw)

Loo (Aw),
Lo (dw)

Lo o (A (0)
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TABLE It

Non-zero components of the spherical tensor 5?(" ) for the polar Cartesian c-tensor zxf{k] of rank 2, anti-
symmetric in the indices i, k, for various magnetic classes of molecular symmetry

Symmetry class Noit-zero parameters ! Spectral lines Lyp(dw)
(international symbols) &5\? ' in Rayleigh scattering
b #n = — __Z_I_O,x" Lyo (do),
2 L1y (Aw)
&(_11) Exz— i“yZa |
M ay,+iay, .
|
2’ m, g/ﬂ (1) = “V’—I“V27 Lll (ACO)
“gl) = Cxz+iy;
2, m, 2/m, 222, mm2, 2mm, mmun, ~(1) 2i Lo (Aw)
_ e ) = — —=uay,
4, 4, 4, 4, 4/m, 4/m, 422, 4/mm, | V2
ZZﬁ 4/mmm, 3, 3, 32, 3m, 5@, 6, { |
6, 6/m, 622, 6mm, 6m2, 6/mmm '
In the other 56 magnetic classes all components vanish.
TABLE I

Non-zero components of the spherical tensor. ;};(4" ) for the polar Cartesian i-tensor "Tfik]l of rank 3,
antisymmetric in the indices 7, k, for various (non-magnetic and magnetic) classes of molecular symmetry

Symmetry class
(international symbols)

>

Non-zero components 75

1’7:;’)(1) = i(?’]yzy‘f"’}xzx):

7 = \/2 xyxtNzpz T 1 Wyxy +2x2)],
n3(2) .

Mo = _\'/_3‘ (szy‘f‘?]zyx "»27]yxz)’

1
,73(2) = [?nxy,\-inzyz‘i"i(’?yxy‘ﬁzxz)]’

/2

~3(2) ! Fi
723 = W ["szy" Nzyx T 1 (Wyzy_ Nzl

2
774(0) . 7— Myxz +Nxzy +7zyx)

"~73(1) = 1 (yzy +Nxzx),

- 1 .
173(2) = \/‘3‘ (77xzy+77zyx—2 77yxz)a

73(2) = _1. e
Niz’ = '\/2 [ﬂny‘Wzyx+1("7yzy“7lxzx)]a

2
"74(0) = == Nyxz+Nxzy+Nzys)
V6
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TABLE 1II (continued)

Symmetry class

- 28
(international symbols) Non-zero components 173

m, m = Fi
i i) = 75_ [y +0zpz F i (yxy+02x2))s

~3(2) 1 i
A= 7[+ﬂxyx+ﬂzyz i(Myxy—Nzxz)]

222, 222 . 1
= 773(2) = _'{/? (nxzy+172yx"277yxz),
,711(22) _‘72“(77xzy"‘77zyx):
740 v
N ' = '\/6 (77yxz+77xzy+77zyx)
mmn2, mm2, 2mm 773(1) =i (nyzy‘|"7xzx)’
'771(22) = T(ﬂyzy Nxzx)
4, 4,3, 6, 6 - 2
t = | 173(2) = \/g (ﬂxzy"nyxz)a
| 2i
773(2) = * ’\/‘_E‘nxzx,
e 2
' o ) = 7? Myxz+ 2xzy)
4,3 Ay
4 . (2) = - i‘l7
Nis '\/E (Mxzy Ix2%)
422, 422, 422, 32, 32, 622, 622, ~3(2) _ 2 = )
62 o \/5 xzy—Myxz)s
»d(0) 2 2
No ' = _\/——6-(’7yxz+ Nxzy)
4mm, 4mm, 4mm, 3m, 3m, 6mm, 730 = 2105zx
6mm, 6mm
2m, 42m, 4m2, 42 ~ 2
m, 42m, 4m2, 42m g = oz T
23, 432, 432 Tel® = 4/67yxz

In the other 14 non-magnetic and 50 magnetic classes all components vanish.



332

Tables I and IT moreover contain Lorentzian spectral lines (for small molecules and
in the approximation of translational and rotational diffusion for the symmetric top),
occurring in the spectrum of scattered light, of the form:

Tim
L. (Aw) = —=.
su{4w) 1+(dot, )2

with J > 0, M > 0. A change in frequency by w, occurs (dw = w—w,). Loo(dw) is the
line due to translational motions, with 7.
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