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TRANSITION PROBABILITY OF THE SYSTEM OF TWO
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The free-quasibound transitions of an alkali-noble gas system within a laser beam are
analysed in the density matrix formulation. New formulae for one- and two-photon. transi-
tion probabilities are derived without the use of the perturbation theory. Numerical calcula-
tions are carried out for one-photon electric dipole transitions of the Na + Kr system
in the limit of weak radiation fields.

1. Introduction

There have been many papers on the interaction of atomic and molecular systems
with an intense laser field. It is well-known that in such cases the usual perturbative
method fails. Therefore, to obtain probabilities of radiative transitions in atomic and
molecular systems being in contact with an intense radiation field, many authors propose
the use of some nonperturbative methods. Lately Kroll and Watson [1] gave a non-
perturbative analysis of the problem. Their idea has been further developed by Lau [2, 3].
The authors dealt with two atom scattering in an intense laser-ficld mode. Treating the
scatlering as near-adiabatic they obtained a formula for the many-photon transition
probability. Two atoms colliding in an intense laser field were handled by them as a
“quasimolecule” with a finite number of discrete energy levels. In the adiabatic collision
approximation there are no radiation transitions among the energy levels of the quasi-
molecule, but the energy levels are strongly disturbed in the intense laser field. Therefore,
energy gaps between some levels may become so small that transitions between them. can
occur either with the participation of a number of field photons, as required by the reso-
nance condition, or simply due to collisions themselves. When the interatomic distance
is such that the energy gap reaches a minimum, the transition probability becomes
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maximal and it can be calculated by means of a Landau-Zener-like formula. However,
Kroll, Watson and Lau demonstrate through numerical results that it seems that their
approach to this problem is not satisfactory. It is so because the authors do not treat
the quasimolecule consequently as a two-atom molecule with its vibrational-rotational
structure. In the present work we shall restrict ourselves to the study of radiative transi-
tions between two discrete states of a quasimolecule formed during a collision of two
dtoms in an intense electromagnetic field. We shall derive a formula for the probability
of such transitions in the density operator formulation. Although our considerations will
be limited mainly to the study of the two-state system it will be shown that the proper
equations for a system of many discrete states reduce to the equations obtained for the
first one. It the next Section we give a short analysis of the equilibrivm state of gas
composed of two sorts of atoms being in contact with an intense radiation ficld. The
third Section is devoted to -obtaining a system of differential equations for the matrix
elements of the density operator between the different molecular states. In Section 4 we
give an analysis of the interaction operator between the quasimolecule and the free radia-
tion field. The numerical calculations and the discussion of the obtained results are in
Section 7. The work ends with a general discussion of the obtained equations.

2. Equilibrium state

Consider a gas composed of two sorts of atoms contained in a volume ¥~ and being
in contact with a one mode intense radiation field. In general, if a gas is composed of
some atoms or molecules then in order to describe the state of the gas it is enough to
know the probabilities of respective states of a single gas atom (or molecule) and the total
number of the gas atoms. Thus we can express the state of the gas in terms of the so-
-called population numbers of the states of a single gas particle. Let the radiation field
be not in resonance with the particles of the gas. Thus there occur no radiative transitions
in the gas. But when two different atoms collide then during the collision the energy
levels of such a diatomic modify considerably due to. presence of the radiation field and
some radiative transitions can appear. Because the effective interaction between the di-
atomic and the radiation field takes place only if the resonance condition is satisfied, we can
say that the interaction responsible for the transition is “turned on” short before a col-
lision occurs and “turned off” after the collision. When the resonance condition is not
satisfied the quasimolecule remains still in the ground state as long as collisions are
adiabatic. Therefore, the diagonal matrix element of the diatomic density operator in the
ground state is equal to unity and the others are equal to zero. After the collision the
quasimolecule can be found with some probability in one of the upper states. This means
that now also the other diagonal matrix elements of the density operator are different
from zero. How to calculate them is the aim of the present work. Now we are going to
write a rate equation for gas interacting with a radiation field. Let the gas under consider-
ation be composed of N; alkali atoms and N, rare gas atoms so that n, = N,/¥" is the
density of the noble gas atoms. Let a denote the ground state of the quasimolecule-and b
stands for an upper state. If NV,, is the number of the quasimolecules in the upper state then
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we have the rate equation

dN,, )

i Nvoy,— Nyt ™" = NyW,— Nyt 00y, @
Here g,,, denotes the cross section for a transition from the lower to the upper state during
a single collision, v is the relative velocity of the atoms before the collision, 7~! is the.
probability per unit time for spontaneous emission of the quasimolecule from the upper
to the lower state and w, stands for the probability per unit time of the decay of the
quasimolecule in the |b)-state due to collisions. Solving equation (1) we get

N snpvo-ba

Nalt) = 20y ettty 2
@ T—1+Wc+npvaba( : ”

In the equilibrium state one obtains that
N¢nyvoy,

N,(t = 0) = —
m( ) .T.— ! + Wc + npvo'ba

3)

and the ratio N, (¢ — 0)/N, determines the probability that the quasimolecule will be
found in the |b)-state. The value of this ratio is different from g,, (o being the density
operator) but there is close relation between g, and oy,

3. Transition probability in the density operator formulation

Now we want to formulate a general theory of radiative transitions between two
discrete states of two atoms colliding within a laser beam. Such a situation can be realized,
for example, by performing an atomic-beam scattering experiment with a laser focused
in the region of collision. We assume further the collisions to be adiabatic. Treating the
colliding atoms as one quasimolecule which interacts with an intense radiation field we
can write the Hamiltonian of the whole of the system as

H = Hy+Hy+V = Ho+V, €]

where Hy denotes the Hamiltonian of the quasimolecule, Hy is the Hamiltonian of the
free radiation field and ¥ stands for the interaction between both subsystems. Denoting
by ¢ the density operator of the system we have Liouville equation

b5}
ih g—?’ = [H, o()]- )

The last equation is the starting point for our analysis. The molecular states |y,> are
solutions to the eigenvalue equation

HM[/Q/)a>. = @@al%>- (6)
Similarly, the field states |p,> satisfy the equation
HRl(pn> = Enl(pn> (7)
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In general, for a many mode field, n = {ny, ny, ..., 1, ...}, where n, is the photon number
of I' mode. Each of the molecular states depends on time through the internuclear distance
R. The vector R is assumed to be a known function of time and can be obtained as the
solution of classical motion on the appropriate molecular potential surfaces. In the remote
past the interaction ¥ has not been “turned on” and the quasimolecule is in the ground
_state, say |y,>. Let the relative velocity of the two atoms v be directed parallel to the z-axis
and the impact parameter be b, then, in the straightline trajectory approximation, we have
7z = pt and R? = b2+z2. The laser-beam interaction is slowly “turned on” and the two
atoms collide. After the collision the beam interaction is slowly “turned off”” and the
final quasimolecular state is observed. Let us now define Liouville space & as the direct
product of the Hilbert space # generated by the Hamiltonian H, and of the dual _space
as H, #ltie L =#® 2%, If A is any element of . then the Hamiltonian H acts
according to the following rule HA = AH— HA. Thus we can rewrite Eq. (5) as

oo(t) 1 .
— = —H t 8
o =5 e, ®
Taking now the functions
t
i
lan; 1) = CXP{— W‘[(@@ﬁEﬁ-(aan(t’) lan>)dt'} [Yad 1 Pus )]
we can expand g in states |an; ) (bm;t| as
Q(t)_' z Qanbm(t) Ian t> <bm t], (10)

where
@an,bm(t) = <an; tl@[bm: t>'

By the sign ) we understand here the sum over all the discrete states and the integral
over all the continuous states of the quasimolecule. Now inserting (10) into (8) we get the
following equations

h

b'm’ #bm

- Z Qa’n',bm(t) <an; tIV(t) lalnl; t)] (11)

a'n’#an

. i ,o
Qan,bm(t) = |: Z Qan,b’m’(t) <b m, t[V(t) [bm; t>

and

2
Cananlt) = = 7 Im (Z Qan (1) <M 1|V (2) an; t>>- (12)

bm
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Here a dot over a symbol means 6/df and Im, (2) denotes the imaginary part of z. In deriving
the last equations we neglected all the terms with matrix elements of the type (y,|dy,/dt>
(see, €. g. Schiff [8], Section 8).

4. Interaction operator

We shall restrict the quasimolecule radiation field interaction to that in the dipole
approximation. The alkali-rare gas quasimolecule has a permanent dipole moment dy,
directed along the internuclear axis. Besides, in an external electromagnetic field, there
appears an induced dipole moment that depends on the polarizability of the quasimolecule.
It is also worth noting that in an intense external radiation field the interaction energy of
the atoms changes during the collision compared with that without the field. This is due
to appearance of the additional interaction term connected with the induced dipole
moments of the atoms. Therefore, the interaction operator can be put in the following
form

V(R) = —dy - E(0)— an(RYE(0) - E(0) 43 R‘S(ds- d, 3545"”-("”'12-)). 13

RZ

Here dy; denotes the permanent dipole moment of the quasimolecule, ay,(R) is its polari-
zability and d; and d, are the induced dipole moments of the alkali and rare gas atoms
respectively. The vector E(0) stands for the external electric field at the centre of the
quasimolecule. According to Silberstein [7], the mean polarizability of a two-atom molecule
can be expressed in terms of the atomic polarizabilities of the individual atoms as

ap(R) = (a5+a,) (1 +2qcs(pr—6), (14)

where o and a,, are the polarizabilities of alkali and rare gas atoms respectively. Similarly
we have

d, = a(R)E(0), d, = a,(R)E(0), 15)
where
#(R) = o(1+200,R™%),  a,(R) = o, (1+2e@,R™°). - (16)
Since equation (5) is given in the Schrodinger picture we take E as independent of time
i. e. we put
ha, \1? ) .
ER) =i em(auelk'R"a‘?ze_lklR)a 17)
2e0V”
173

where a and af are photon annihilation and creation operators. Keeping in mind that
alny = \Jnln—15, atny = Vn+1 [n+1)
and restricting our further considerations to one mode electromagnetic field (/, 1) we obtain

Kam|V(R) lany = — ;%h% [<ala(R) Ja) —<ala(R)o,(R) |a) (1—3 cos* HR™?],  (18)
0
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where n;hv, /¥ is the density of the field energy and 9 is the angle between the axis of the
molecule and the polarization vector e;;. In similar way we get the nondiagonal matrix
elements of V. For one photon absorption i. e. for the |bn;—1) « lan;) transition we
have

B\ 12
{nb—1V(R) lan,y = I(Z;Of;) <bl (en, " dv) [a> (19)

and for two photon absorption

—— ho,
(b —=2|V(R) [anyy = ~/n(m—1) iy [Pl(®) 10

+<{blag(R)xy(R) [ay (1—3 cos® HR°]. (20)

Putting now &,,,(R) = &,+<{am|V(R)|an;) and &, (R) = &4+ {bm|V(R)|bm) we get

t
PR
[

{bm; t|V(R) lan,; t) = exp {—h—J [Eom(R)—& am(R)+Em—Ent]dt’} <bm|V(R) |an;

= [cos () +1 sin y,,()] <bm|V(R) lan,, 2y
with

Yba(t) =h" ! f [gbm(R) _,éaanl(R) + Em - En]dt, (22)

and m equal n—1 or n—2, n, being the initial number of photons in the (I, 1)-mode. The
eigenvalues E, and E, are, of course, equal to mhe; and mho, respectively.

5. Two-state approximation

In the remaining part of this paper we shall restrict ourselves to the two-state approxi-
mation for the quasimolecule. Such an idealisation of a diatomic system seems to be far
from reality but thanks to that our expressions for the matrix elements of o simplify it
appreciably. Besides, it will be pointed out that in a general case, when treating the quasi-
molecule as a system of many discrete states, the corresponding expressions reduce to
those obtained in the two-state approximation. Let us consider then the one photon
absorption from the lower state |an) to the upper state |bn—1). Putting Qanan(t)
— Obn—1.0n—1(t) = F(t) Bgs. (11) and (12) reduce in the two-state approximation to the
following equations

. 4 (nho)\'? .
F(t) = - -h— YR 7% <b| (el}. * dM) |a> (Re Qan,bn—l(t) Cos yba(t)_Im Qan,bn—l(t) sin ’Yba(t))'
0

. — -t nhao, 1z .
Re Gunpn—1() = 2ot (b (e - dpp) |a) cos y,,(DF(1),
0
hoop\> |
1 fuane ) = =07 (Fl) O e )0 sin 0P 0
0
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Making use of the relation

Qan,un(t)—l' an—l,bn—l(t) = 1 (24)
we obtain finally '

Canan(®) =7 (L+F®),  Qon-1,m—1(1) = 3 (L=F(®)). (25)

For the two-photon absorption we get equations identical in form to Eqs. (23) but with
other matrix elements of the interaction operator. The set of equations (23) is to be solved
with the boundary conditions such that in the remote past g,, = 1, gy, = 0 and g, = 0.

6. Semi-classical treatment

It is well-known that the ground state of the quasimolecule composed of alkali-rare
gas atoms is repulsive or has a very shallow minimum at some internuclear distance. But,
as it was calculated by Baylis [4] and Pascale et al. [5] some excited states are pronounced
attractive. In our considerations we treat the quasimolecule itself quantum mechanically
whereas the relative motion of both atoms in the ground state is described classically.
In the straight line trajectory approximation z = vt and we can easily express 0p/dt by
0p/dz. In the integration of Eqs. (23) the behaviour of the function y,,(¢) plays a great role.
Since the functions sin y,,(¢) and cos 7,,(¢) oscillate very quickly in time, we conclude that
the main contribution to the integral results from the surroundings of the extremum of
the function y,,(¢). As one can easily convince himself, the function y,,(¢) has the extre-
mum if the resonance condition is satisfied. Therefore, expanding the function y,,(¢) in
a series around the point where the resonance occurs, we have

i - 86,(R 06 (R
'yba(t) = 'yba(z) = (flu)_l J[ﬁb(z')—-@@a(z’)—hwz]dz'+ ZthoRo [( abl({ ))0— ( 61(2 ))0] ZZ,

(26)

where z, = vt, and R, = (b®+z2)"/2. In deriving the last expression we made use of
the fact that the first derivative of y,,(t) vanishes at the resonance point. As one can see
from (23) to obtain the required matrix elements of the interaction operator we need
first to know the corresponding molecular wave-functions of the quasimolecule. Concerning
the electronic wave-functions we guessed that they can be calculated via the method
proposed by Baylis. The others can be taken as those for a two-atom molecule. If it happens
that the matrix elements of the dipole moment of the quasimolecule are slowly varying
functions of R then it will be a good approximation to take for the calculation their values
at the resonance point.

7. Calcilations and results

In order to illustrate our method we have solved the set of Egs. (23) for the Na + Kr
system in the limit of a weak laser field when the absorption (emission) coefficients for
electric dipole transitions are proportional to the radiation intensity. The set of Eqs. (23)
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has been solved for one-photon transitions only. It is due to the fact that we do not know
as yet the electronic wave functions of the quasimolecule. If they were known one could
solve Eqgs. (23) for the two-photon transitions as well. The calculations concern the two
electronic transitions 2%}, — Iy, and 2I], > 2[5, with the vibrational quantum
numbers of the upper state v = 0 and v = 5. The corresponding potential surfaces have
been taken from York et al. [9] (see Fig. 1). Besides, the calculations are limited to the
case when the lower state of atoms is the s-colliding state (/ = 0). Thus, according to the
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Fig. 1. Potential curves for the ground and the first excited state of the Na + Kr system

required selection rule, the quantum number J of the quasimolecule does not change for
the 2%,, — 2I1,,, transition and changes by one for the 25 172 = 25, transition. It was
assumed the total wave function of the quasimolecule to be a product of the electronic
wave function, of the rotational wave function and the vibrational wave function. The
vibrational wave functions yg,(r) put in the form g (r) = R(r)/r satisfy for both the
lower state and the upper state of the quasimolecule the wave equation

h?* d*R(r)
— — —~ + V(DR = E,;R(P), 270
2u  dr
with ,
Vi(r) = UM+ f%};—l)

To solve the set of Egs. (23) we need the vibrational functions from the small range around
the resonance point r, only. Therefore, for the lower state they can be well approximated
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by the corresponding Airy functions. Thus we put R(r) = AP(—{), where

= (2uF;, [h2Y2(r —ro) with F; = |(dV,(r)/dr)o| and &(x) is the Airy integral, The normal-
1zmg constant 4 has been taken so that the function R(r) can be normalized asymptotically
to the particle flux density in the ingoing (or outgoing) wave equal 1/2nh (see Landau
et al. [10]). The interaction potential U(r) for the upper electronic state of the Na+XKr
system was approximated by means of the Morse potential

U(r) = D f{[e?¢7)—11*—1} -

with the parameters D, = 730 cm?, 7, = 3.25 A and B = 1.45 A-! (see [9]). As was
shown by Pekeris [11] the solutions of the wave equation (27) can be well approxima-
ted in terms of the generalized Laguerre polynomials. Particularly, when neglecting the
rotational term the solution of Eq. (27) can be expressed as R(r) = N,e™”?y"2L(»),
where y = exp {—B(r—r,)},s = k—2v—1land k = wX[w, is a characteristic parameter
of a two-atom molecule. Generalized Laguerre polynomials are given by

L) = ¥ 1 (4o B

+(=D(s+v)(s+v—1) ... (s+1),

and the normalizing factor N, is

N = Bk—20—1) ]
. - ”_I:v!(k—v—l)l‘(k—v—l)] '

On the other hand the rotational wave functions of the quasimolecule are taken to be
those for a symmetric top given by so-called Jacoby (hypergeometric) polynomials

J+1

Dx(0)) = )

(see, e.g. Herzberg [12], p. 118). Since we do not know the electronic functions of the
quasimolecule, therefore, to have the corresponding matrix element of the dipole moment
(see Eqgs. (23)) we have replaced it by its asymptotic value taken at the interatomic distance,
where the electronic wave functions of the system go over into the corresponding atomic
wave functions. Thus for the matrix element {Rj;|7 |R3o) of the atom of sodium we
took from Bates et al. [13] the value to be 4.41588 a,, where a, is the Bohr radius. For
the transitions under consideration we have obtained

ClIys) (e dy) 1227,2> = 0.346944ea
and
Clly o) (e dy) 1227,> = —0.520416ea,,

where e is the electronic charge. Since we consider the interaction of a two-atom system
with the laser beam of definite polarization therefore to perform the calculations, one can
take an arbitrary geometry of the system. Our calculations were carried out for the case
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Fig. 2. Diagonal matrix element gz, versus the parameter z = vt(a,). The solid line corresponds to the
2X%)2 — I, transition and the dashed line corresponds to the 2X%12 — 205, transition (both for v = 5).
The arrow shows the direction of the relative velocity of atoms
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Fig. 3. Same as Fig. 2 for an off-diagonal matrix element gp,. Re @bq and Im gy, are denoted, respectively,
by I and 2
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when the polarization vector e;; of the laser light has the same direction as the relative
velocity of the colliding atoms. Finally, the set of Eqs. (23) has been solved numerically
with the help of the sixth-order Runge-Kutta routine. Figs 2 and 3 present the solutions
for the two electronic transitions 227, — 2I1,,, and 2X{,, ~ ?II5,, with v = 5 (the transition
energies equal 16518 cm~* and 16535 cm~! respectively) for the radiation intensity
118 W/sec. In order for these transitions to take place the relative energy of the colliding
atoms has to be equal to 82 K. This means that the atoms can collide in the s-collid-
ing state if the impact parameter » is smaller than its boundary value b, = 0.18 A.
Fig. 2 presents the diagonal matrix element g,, versus the parameter z = vt(a,) (with
r = (b2+2z*)'2) for an arbitrary value of b < b,,. The solutions of Eqs (23) do not depend
practically on b for 0 < b < b,,. We see that two atoms colliding within a laser beam
can go over into a quasibound state provided the resonance condition is satisfied. The
probability of being the atoms in the quasibound state increases gradually when the
perturbing particle (Krypton) approaches the resonance position r, and reaches a constant
value at some interatomic distance a little smaller than r,. We note also that the probability
of finding the two atoms in the quasibound state after the collision is for the (1/2 — 3/2)
transition nearly about a factor of two larger than for the (1/2 — 1/2) transition. On the
other hand both transitions with v = 0 (the transition energies equal 15354 cm—* and
15371 cm~* respectively) can take place with the relative energy of the colliding atoms
at 1306 K. This corresponds to b,, = 0.05 A. For these transitions we have obtained the
asymptotic values of g,, to be 0.0036 and 0.008, respectively. Since the cross section
for the transition from the lower state |a) to the upper state |5} of the quasimolecule
can be defined as

bm
Oup = 21 j 0es(b)bdb,
0

we can calculate it for all the transitions considered to get
oaflj2 = (v =0)1/2) = 1.6 - 10" *a2, 0,,(1/2 > (v = 0)3/2) = 3.29 - 10~ *a2,
o412 = (v = 5)1/2) = 1.31 - 1073a2, 06,(1/2 = (v = 5)3/2) = 2.92- 10 3al.

From the obtained results we conclude that the free-quasibound transition of a two-atom
system during the collision within a laser beam is more probable for the (1/2 — 3/2)
transition than that for the (1/2 — 1/2) transition. Besides the transitions with v = 5 occur
about ten times more frequently than those for » = 0. The latter result means that the
free-quasibound transitions of the atoms induced by collisions are more probable at
smaller relative energies of colliding atoms.

8. Discussion and conclusion

We have obtained the set of differential equations for the matrix elements of the
density operator of a quasimolecule in the two-state approximation. But describing the
real quasimolecule with more than two levels is more useful, since the role of near-resonant
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intermediate states in determining the one- and two-photon transition probabilities is
important. We want now to point out that in the density operator formulation, as it has

been done in the present work, the appropriate set of differential equations for the quasi-
" molecule of a finite number of well-separated levels reduces to that obtained in the two-
-level approximation. Consider for example a three-level quasimolecule and let the
resonance condition be satisfied for two pairs of levels. Of course, the resonance condition
is not satisfied for both pairs simultaneously. If it is satisfied primarily for one pair of the
levels during the collision it is not satisfied for the other one. Therefore, in the integration
of the equations the nonresonance terms can be dropped and we obtain again the set
of three equations to solve. Afterwards, the second pair of the levels is in resonance with
the electromagnetic field whereas the first one is not. Now in integrating the equations
in the other integration range we can drop again nonresonance terms. Thus, we get
another set of three equations to be solved with the corresponding boundary conditions.
We note only that now any matrix element of the density operator depends on the remaining
ones. The considerations carried out in the present work show also that one can obtain
the probability of one- and two;photon transitions in two-atom systems within a laser
beam without use of the perturbation theory. Therefore, it seems that the procedure outlined
in this paper can be applied to some classes of atomic systems being in contact with an
intense radiation field with success.

The author wishes to thank Professor J. Fiutak for suggesting this problem.
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