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Rotating frame relaxation time for spinning sample Ty, has been calculated in a weak
collision case for the dipolar interactiop and the chemical shift anisotropy ‘interaction.
It has been shown that in a special case of rapidly decreasing spectral density of the correla-
tion function T'1or measurements may be used to determirie its shape in the frequency range
from 0 to 2wg.

1. Introduction

'One of the most important results of nuclear magnetic relaxation studies is a possibility
of obtaining information about spectral density J(w) of the correlation function G(7) of
molecular motion. Assuming that dipolar interaction is a dominant relaxation mechanism,
the spectral density J(w) of the correlation function at frequencies w, and 2w, (where Wo
is the resonance frequency) may be obtained from Zeeman spin-lattice relaxation time
T, [1]. Rotating frame nuclear magnetic relaxation time Ty, [2] gives information about
J(w) at the frequency w, (where w, is the amplitude of radiofrequency field (rf)), whereas
J(®) at the frequency w, (where o, measures the local field) may be obtained from the
dipolar relaxation time Ty, [2]. For the rotating frame relaxation time 7' 10 t0 be meaningful
the following condition must be satisfied 0 = wy. Therefore J(w) in the frequency range
from 0 to o cannot be investigated using these techniques. _

Nuclear magnetic resonance (NMR) experiments in rapidly spinning solids’ [3, 4]
are now one of the well established techniques to study fine interactions in solids. Kesse-
meier and Norberg [5] considered spin-lattice relaxation in rapidly spinning solids due to
paramagnetic impurities accompanied by spin diffusion, whereas Haeberlen and Waugh [6]
considered relaxation due to thermally activated motion. They showed that macroscopic
sample spinning has little effect on the spin-lattice relaxation.

In this paper the relaxation rate in the rotating frame, under the action of rf field
for the spinning sample has been calculated for the dipolar interaction and the chemical
shift anisotropy interaction. Preliminary results were published elsewhere [7]. The calculation
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has been performed in a weak collision case using a method similar to that one of
Blicharski [8]. It has been shown that the rotating frame relaxation time T, for the spin-
ning sample may give information about the spectral density J(w) of the correlation
function in the frequency range from 0 to 2wy (Where oy is the sample spinning frequency),
unavailable in standard relaxation experiments.

25 ‘Theory

Consider a sample containing a system of nuclear spins 7 in a strong external magnetic
field B,, irradiated with a radiofrequency field (cf) of frequency w and spun at a frequency
wg around an axis inclined at an angle g with respect to B,. Assume also that nuclear spins
interact via the dipolar interaction and the chemical shift anisotropy interaction. The
Hamiltonian #5#, in the laboratory frame “L” may be written as a sum of terms [1]

hoty = hAt P+ hotF+ha R+ hog, @

where H#Z, HE, #P, #5 are Zeeman, rf-field, dipolar and chemical shift anisotropy terms,
respectively.

The dipolar interaction term is written as a product of irreducible spherical tensors Ty
and tensor operators Vi [9]

2
H E o Z z (—1)MT2DM(rij)V;)—M(Iin), 2
i>j M/-2
where
D 7 hyz (2)%
Toulryy) = "'-\/6 3 Do (2ip)s (2a)
ij
1
anGI=e Y (AMIM — M, [112M)[ )~ (2b)
My—1

and 2{3(Q) — Wigner rotation matrices, (1M 1M — M, |112M) — Clebsch-~Gordon co-
efficient, Q;; = (a;, B;j» 0) — Euler angles of 7 e

In a similar way the chemical shift anisotropy interaction term for symmetric chemical
shift tensor is written as

HE =Y To(RWVeodd+ Y, X (=DM T (V5 —p(Ti)s 3)
ki1 kil M/—2
where
Teo(k) = + Tr {yo,4(k)} = yo(k), (3a)

T312(k) = 3 ¥{[05(0)— 0y, ()] £ 20,(K)}
Tfs (k) = Fy{o.k)—io,(k)}
i

\J6

Tso(k) = —= {20,.(k) — 0::(K) = 0, ()}, (3b)
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Voo(I) = I2B°, (3¢)

1
Vo) = Y (IMIM—M |[112M)[3BM~M: (3d)
Mi/=1
1
and B! = T ?/7 (By£iB,), o,4(k) — are elements of the chemical shift tensor for
nuclei k. For homogeneous external magnetic field usually used in NMR experiment,
B, = B, = 0, Eq. (3d) becomes

1 -
Viga(I) = 0, Vi (I) = \‘/TE BLY, Vil = \/% B°I. (o)

The density matrix theory of relaxation is used to perform the calculation [1, 8].
The density matrix equation is transformed into the double rotating tilted frame DRFT,
where Zeeman and rf field terms vanish. This transformation is equivalent to a rotation
in the spin space by the Euler angles Q, = (% By 70

'(Ol .

%, = ot, p, = arctg s Ve =Wt @, = (a)f+(cu0—a))2)”2, 4)
a)o_w

where @, = yB,;, B, is the amplitude of the rf field of frequency ;.

In order to describe the macroscopic sample spinning and the molecular motion,
the spinning sample frame. “R” and the molecular frame “M?” are introduced. The orienta-
tion of “R” with respect to “L” and “M” with respect to “R” is described by the Euler
angles Qp = (wgt, fr, 0) and Qy = (am(?), Purl?), ym(?)) respectively. Q,, is. a random
function of time describing the random motion of molecules. The space part of the Hamilto-
nian (1) is then transformed into the molecular frame “M”’ and the density matrix equation
solved by successive approximation up to the second order. Calculating the expected
value of {I°) the following equation is obtained [8]

a1’y

7 = —«sd D= <BU0), &)

where
BUYY =4 | duc[# (=), [#,0, T ©)

and #, = A, +H# is the interaction Hamiltonian in the DRTF frame for the spinning
sample, { ), is the average for the thermal equilibrium density matrix.

N
He =Y 2 GO (TN @) TR NI e QIR L), (T)
i>j 1
M>M3

where 7}; is expressed with respect to M. 4 has identical form to that one for #7.
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If (B(I°)) is linear in {I°) then the rotating frame relaxation time T} ok is given by

1 (BU%
T % ®

Assuming that the interference effects between the dipolar and the chemical shift anisotropy
interaction are negligible [10] contributions to the relaxation rate from these interactions

may be calculated separately
()
TlgR TIQR TIQR .

After a rather tedious calculation, using (8), (7), (6) and (2), (2a), (2b), one can get
the following expression for the dipolar interaction contribution to the relaxation rate
in the rotating frame for the spinning sample

2
1 \P g
(7a) = #1040 ) D BRIt

a. Dipolar relaxation

i>j M/-2
MZM A2 (B (BIM3I (M + M o + M;,), (10)
s

where: { > is the average over the motion, J(w) — the spectral density of the correlation
function

+ o0
J(MCO+M160R+M3a)e) . j g(T)e—i(Mm-(-an)R'*‘Ma(Oe)dt (11)

and g(7) is the correlation function of the molecular motion. Let us assume that the correla-
tion function is exponential with the correlation time t..

Special cases may be obtained from Eq. (10). The Zeeman relaxation time 7 is
obtained, if

Br=0, p,=0, wr=0, o =0, o=w,. (12)
Then from Eq. (10) one obtains the well known formula [1]
INP ., :
<?1> = 7 4p(4J(2w0) + J(@0)), (13)
where 43 is the second -moment for the polycrystalline sample
45 = FI(I+1) 2 2 Dt Dar| T FIDI (14)
i My

The spin lattice relaxation time for the spinning sample T’ is obtained from Eq. (10), if

BR 7é 0’ ﬁg = 0: (,Ue = 07 W = Wy, (15)
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than

1\° 2
(F) —142 E MEA, (BT (M + Myag). 16)
iR

MM,

In an experiment the resonance frequency , is much larger than the spinning fre-
quency wg so that for the spectral density of the correlation function one has

J(Moo+ M mg) ~ J(Mwy) (17

and (Tyr)° = (7)" in agreement with previous calculation of Haeberlen and Waugh [6].

Let us consider the relaxation in the rotating frame for the spinning sample in the
special case when the molecular motion is slow and the correlation time 7, long enough
s0 that w7, > 1. For M # 0 the spectral density of the correlation function is negligible.
Exactly at resonance, spinning at the magic angle i.e.

n 7
w = g, ﬁe = —2_ » ﬁR = ﬁ?{d = 54°44 ’ (18)

one gets

D 2
(T—j;> % {2(or+ @] +2/[or+20,]+I[Aog— 0 ) +20[0g —20,]}.  (19)

J(wW)

I i 1
0 W, Wy Wy 2wy Wy w

Fig. 1. The spectral density of the correlation function in the special case of slow molecular motion. wy,
@1, WR, Wy are frequencies of the local field, the rf field, the sample spinning and the resonance frequency
respectively

If the spectral density of the correlation function decreases rapidly as in shown in Fig. 1,
so that

J[2(or + )], J[or+20,] < JT[2(g—©y)], J[og—20,], (20)

equation (19) becomes

1 \° 42
(=) =& U2ou—on1+27T0n 20,3 ey
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In this special case one can obtain information about the spectral density of the correlation
function J(w) in the frequency range from 0 to 2wg. As is seen from Eq. (21) J(w) can be
measured directly in this range performing an experiment consisting of measuring T’y as
a function of the spinning frequency wy and the rf field intensity ;.

This frequency range is not available to ordinary rotating frame relaxation time T,
measurements on stationary sample, because it gives the spectral density of the correlation
function at 2w,, and the field intensity cannot be made small enough otherwise T,
looses its sense [2].

b. Chemical shift anisotropy relaxation

A contribution to the relaxation rate from the anisotropy of the chemical shift inter-
“action (1/Ty,)° in the rotating frame for the spinning sample has been obtained after
some algebra from Egs. (3)—(3d), (6), and (8) is equal to

1) w360’
iy 2 IS

A% (BIM 3 (M +M 0+ M,0,), (22)

2

1
Z Z (IM10[112M)*d%}y,(Br)

Mi/=~2 MMz/—1

where
562 b (azz . o-xx)z + (azz . o-yy_) (Gxx - ayy)' (23)

From this general formula special cases can be obtained in a similar way as for the
dipolar relaxation. The spin-lattice relaxation time (7)° for stationary sample is obtained
from formula (23) as a special case if conditions (12) are satisfied. The well known formula
[1] is obtained '

1 G
<F> = 1= w3dc*J(w,). 24)
1

The spin-lattice relaxation time (7,)° for the spinning sample is obtained from formula
(22) if conditions (15) are satisfied and is equal to

2 1
1Y’ 0jés , 2 2y )
1® Mi/-2 M/—1

Comparing formulas (24) and (25) it is easy to see that (7})° = (Tg)° because of con-
dition (17).

The rotating frame relaxation time (7T},)° calculated previously by Blicharski [11]
is obtained from (22),-if

T
‘wg = 0, ﬁR =0, ﬁ@ = 'E > @ = Wy, D, = Dy, (26)
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and is equal to

7 1 [
( T-) = o5 0366°{3J(wo) +4J(®,)}. (27)
\*1g

The rotating frame relaxation rate (1/7,)° for the spinning. sample in the special
case, when the molecular motion is slow and the correlation time 7, is long enough so
that wet, > 1 is obtained from formula (22) if conditions (18) are satisfied. In a similar
way as for the dipolar interaction one gets

1\ .

(T ) = 135 0600 {J[20p + 0, ]+ 2J [ + 1]+ 20 [ — 0, ] + T 20 — o Jb  (28)
1¢R )

For the rapidly decreasing spectral density of the correlation function satisfying conditions

(20) Eq. (28) simplifies to

o
(ﬁ) =1is wééaz{J[ZwR—wlj+2][wR—co1]}.> 29)
As is seen from this formula information about the spectral density of the correlation
function in the frequency range from 0 to 2wy can be obtained from measurements of
(Ty,r)°. The same discussion as for the dipolar interaction applies here.

As has been shown here, measurements of the rotating frame relaxation time Ty
for the spinning sample may open new possibilities in studying the spectral density of the
correlation function in the very low frequency range, extending cons1derably the range
of standard rotating frame relaxation experiments.

The author wishes to thank Professor E. R. Andrew and Dr. J. S. Blicharski for
stimulating discussions.
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