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The dependence of the Curie temperature, T, of a diluted ferromagnet on the concentra-
tion x, is calculated by the constant-coupling approximation in a more rigorous and complete
manner than earlier results. The critical concentration, x., and the dependence of T, on x
is calculated for various spins and lattices. The procedures and results of this and other
calculations are compared, showing considerable divergences is some cases.

1. Introduction

The effect on the Curie temperature, T,, of a ferromagnet caused by the introduction
of non-magnetic ions has been calculated by various means [1-13, 16]. In particular,
the constant-coupling approximation has been employed in two quite different and some-
what limited ways [2, 13]. Both of these led to the same behavior of 7, with concentration
and the values of the critical concentration, x,, for which the Curie temperature goes to
Zero. .

It is the aim of this paper to describe the proper and complete approach to the problem
within the constant-coupling approximation and to show that; for spin 1/2 at least, this
approach does lead to these same results for 7, as a function of the concentration, x, and
to some more general results as well.

2. The constant-coupling approximation for dilution

We employ the constant-coupling approximation in the manner described in Ref. [14].
To treat the dilution problem, we consider the entire lattice decomposed into 3 Nn pairs
of nearest neighbors. N is the number of lattice sites and » is the coordination number
of the lattice. Each of the two sites has (#— 1) other neighbors of whichk = 0,1, 2,... (n—1)
may be magnetic, the rest not. (When we include the possibility that site 1 has k; magnetic
neighbors while site 2 has k,, we find that this has no effect on T.)
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The Hamiltonians of the various types of clusters can be written
Hg‘)’.= —ZJSISZ_,ukh(Slz'I'SZz)a H(lk) o= O—Nkhslza Hf)k) = 0’ (1)

when uS is the magnetic moment of the atom, kk is the internal field produced by the k
magnetic neighbors, and J is the exchange integral. H; (0 is the Hamiltonian of a pair of
neighboring magnetic sites each of which has k magnetic neighbors; H{ is the Hamil-
tonian of a pair of sites, the magnetic one w1th k magnetic neighbors, and H is the
Hamiltonian of a pair of non-magnetic sites.

In each case,

Z® = 1p e PP, 2

where f = 1/kT. The partition function can be written as a product since all the different
Hamiltonians commute (not true for an antiferromagnet):

n—1
z = [1 @0y @y @y 3

The numbers N; (actually, N{¥) refer to the number of ways of having that kind of cluster,
assuming random distribution of magnetic and non-magnetic ions. Hence,

N = 3 Nnx¥f,,  N¥ = 4 Nn2x(1-%)f, @
and
NP = I Nn(1—x)*f;

and x is the concentration of magnetic ions and f; are the binomial coefficients for (n—1)
things taken k at a time:

| I it VLI PP R s
h= fa—t-gm 7P 2

Then
n—1
(nZ) = 1’[0 (NP In 2+ NP In 2 +0}. (6)
k=

The proper procedure [15], having formed the configuration average, {InZ), by
‘taking the sums over k, is to find the thermal properties by taking the proper derivatives.
The Curie temperature will be determined by the magnetization and this is most con-
veniently found by including an external magnetic field, 4., by the change ukh — ukh+ uh,,
and then taking the derivative of In Z with respect to fuh.. This will give us ’

1 nZ)
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As explained in Ref. [14], the constant-coupling approximation can be achieved
by the use of a one-particle cluster with

H® = —ukhs,. (8)
Then
nZ') = kgo Nxf, Z'®, , €
where
7o s ket =k
fi = m_;{)!x (1—x) (10)

is the relative probability of finding k magnetic ions on » sites. Then

1 oln Z

"= N 6 im0 &
Now equating m, and m, gives the same results as constant coupling.
S =1/2: .
For spin 1/2, we can easily find
2
m; = 1+23202an ie_z", trxtanhzl i
and
m, = +xtanh 12, (13)
where
A= Bu(n—1)xh, (14)
and
A = Bunxh. (15)

If we expand (12) and (13) in powers of A, keep only linear terms, and equate my and m,,
we have the Curie temperature equation

4x n
—_— 1—x)= —, 16
3+e %P A n-—-1 (16)
where
D = ﬁcJ = J/ch’ (17)

which gives the behavior of T.(x) for a given lattice.

Other ways of obtaining this same result exist. One is to replace the Hamiltonians,
Hi('f), of Eq. (1) by simply H; with k replaced by (n—1)x and by nx in H;. Another is to
take the Curie temperature equation for the constant-coupling approximation for an
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undiluted lattice and take a configuration average of this equation. This approach is due
to Handrich [13]. Finally, a third approach is to examine an arbitrarily chosen pair of
magnetic neighbors and follow the constant-coupling procedure (for 7 > T,) with (n—1)
replaced by (2—1)x in the internal field. This method is due to Elliott [2] and a variation
of it has more recently been published by Oguchi and Obokata {12]. All these methods
are discussed briefly in Appendix A. We note here that the present procedure is more
rigorous than Handrich’s and more general than it or the last two.
S=1:

Proceeding in the same way for the spin-1 case, we find the following result for
Tix):

2n
3xf(po)+2(1—x) = == (18)
where
e?+5¢%
V= heyse &)

To find the critical concentration, let p, — o and get

< 2
Xo =~
¢ n—1 20
S = oo:
Elliott [2] has shown that, in the limit of classical spin,
1
Xy = e
n—1

a result which is also found for the Ising model and the Bethe-Peierls-Weiss classical spin
approximation. (Consult the Appendices B and A.5).

3. Conclusion

The behavior of T, vs. x is shown in Fig. 1 for a body-centered cubic lattice (n =
We note the abrupt descent of T, to zero for the critical concentrations:

x, = 3/(n—1) for § = 1/2 (Eq. (16)),
2/(n—1) for S =1 (Eq. (18)),
1/{(n—1) for § = oo (Eq. (A7),

or Ising model (Eq. (B1)).

Il

[

All of these (except the Ising model) agree with Elhott s general-spin result given by
Eq. (A5) in Appendix A. .
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The general behavior shown in the figure is as expected from previous observations
and calculations (see Ref. [7], for example), viz., a decrease, initially linear, in 7, as x
decreases, a more rapid decrease for smaller x (negative curvature), ending with an infinite
slope, dT,/dx — o0 as x — x,.

Calculations of x, by other methods are mostly for the spin —1/2 case (or the Ising
model). High-temperature expansion methods are used to find expansions of the suscepti-
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Fig. 1. The reduced Curie temperature vs concentration for a body-céntered cubic lattice (n = 8), calculated
by the constant-coupling approximation

bility in powers of ‘the concentration [6-8] and give ‘a value for x, &~ 2/n. A similar result
is obtained by solutions of the percolation (site) problem [5], the spin-wave theory [9; 20],
the coherent potential approximation [21]. This rather common approximate result can
be qualitatively justified by the simple argument that, to be ferromagnetic, a minimum
requirement is that each magnetic site have at least rwo magnetic neighbors or nx, = 2.
Our result, (n—1)x, = 3, requires a lattice of considerably higher concentration.

For the Tsing model, our result (1— 1)x, = 1 appears unreasonably low. It is, however,
exactly the result found in Ref. [1] by what was referred to as the cluster variation method,
and it is not far from the percolation (bond) problem result of Ref. [5] which is x, ~ 1/(n—2).
One would expect, instead, a result closer to that of the site problem, 2/n. That result,
again, is obtained by the Bethe-Peierls-Weiss second approximation [11] (using an enlarged
cluster including next-nearest neighbors) for Ising systems. The lower critical concentra-
tion for the Ising model (compared to the Heisenberg spin —1/2 case) was suggested
in Ref. [6] III.

We find that x, is the same for the classical-spin as the Ising model and that, as seen-
in Fig. 1, the two curves of 7, vs. x almost coincide. The only comparison with other
work here is with the Bethe-Peierls-Weiss classical-spin result [3] which is identical with
ours. (See Appendix A (v)).
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The T,(x) curve for S = 1 falls, as might be expected, about midway between those
for S = 1/2 and classical spin. The rather large spin-dependence of T.(x) is surprising
since one intuitively expects that the problem should be more dependent on lattice topology
than spin.

Whether the constant—coupling method is a good approximation for the dilution
problem remains an open question in view of all the above. The argument that the two-
_site. Hamiltonian used refers to a cluster too small to describe dilution properly does
not bear close scrutiny. There are, after all, 2(n—1) neighbors included in the internal
field term so that, in all, 2 sites are considered and this should be enough for a reasonable
description. The series and cluster expansions of Rushbrooke and Morgan [6] and Elliott
and Heap [7, 8] include only sets of 5 or 6 sites respectively and the percolation calculations
of Domb and Sykes [4] and Sykes and Essam [5] a similar number (larger for simpler
lattices) while the Bethe-Peierls-Weiss method [3] uses just n+1 sites. The lack of better
agreement among all these methods remains unexplained.

-

APPENDIX A
(/) If we replace equations (1) and (4) by
H, = —2J8,8S,—uh(n—Dx(S,,+S,,), H; =0—ph(n—1)xS,;, Ho =0, (A1)

and
N, =1 Nnx?%, N, = Nnx(1-x), N,=+Nn(l—x) (A2)

then despite obvious modifications to (2) and (6), the same value of m, results. Similarly,
for a one-particle cluster, there is no change in m,, so equating m, and m, gives Eq. (16)
again. Thus, we see that the separate -consideration of the different cluster H; ®) for
k=0,1,2...n—1 has no effect on the thermodynamic properties of the system and (A1)
can replace (1). (We note that the second term on the Lh.s. of (16) is the contribution of
Z, = tre M see note (iii) below.)

(ii) Handrich [13] considers dilution by configuration-averaging the Curie-temperature
equation. For constant coupling this equation is (take x = 1 in (16)):

1

T3 &P = -——. (A3)

From this, the configuration average is taken by simply setting

(g(pe)y = g(p)x+g(0) (1—x), (A4)

which again leads to (16). The fact that this procedure works in the present case implies
that the operations of configuration averaging and taking the derivatives as in (7) and (11)
commute. The validity of this procedure will be discussed again below and in a subsequent
paper. ’

(iii) Elliott [2] considers the constant-coupling approximation for general spin but
only for temperatures above 7. Dilution is introduced by considering (quoting Elliott),
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“only pairs where both atoms are magnetic and the coordination number around such
a pair reduced from” (n—1) to x(n—1). His result is, again, Eq. (16) which we can find
by using his Eqs (11) and (12) (the latter being the transformation whereby the results
of the Ising model change over to those of the Heisenbérg model for § = 1/2 in the constant-
-coupling approximation) and Eq. (6) from Ref. [1]. (The result of what is called the

cluster-variation method for the Ising model.) Elliott’s general-spin result for the critical
concentration is

X, = —§j~1~, (AS5)
~ S(n=1)

which we note goes to 1/(n—1) for classical spin and 3/(n—1) (Eq. (17)) for S = 1/2. The

fact that Elliott arrives at Eq. (16) is surprising in view of the fact that he considers only

the Hamiltonian H, in (Al). The classical-spin model shows T,(x) to be the same as the

Bethe-Peierls-Weiss “classical spin result (see (A7) below) and is shown in Fig. 1.

@iv) Oguchi and Obokata [12] also use a pair of magnetic neighbors each with (n— 1x
magnetic neighbors. This factor replaces (# — 1) in the internal field term in the Hamiltonian.
When they consider the one-site Hamiltonian, the internal field is replaced by (1 + (n— 1)x)h.
The first term in the parenthesis is to account for the fact that one neighbor (the other
of the pair) is certainly magnetic. This is, like Elliott’s, an obv1ously incomplete pr ocedure
since only pairs of neighboring magnetic sites are considered.

(v) Finally, we note some results of the Bethe-Peierls-Weiss method for classical
spin, using methods similar to those discussed above. If done in the proper way (by taking
the configuration average of In Z), it is found [3] that

1

xc = b (A6)
n—1
and
L(b,) = 1 ' A7
.where L is the Langevin function, _
L(b) = coth b—1/b, (A8)
and , )
b = 2JS?/kT. (A9)
The Curie temperature equation for the undiluted lattice is .
1 ,
Lby)=——. (A10)

n—1

If we follow Handrich’s procedure and take a configuration average of: this equation, we
find

CL(bo)y = Lb)x+L(0) (1—x) = L(b)x, (AL



1

= x(n—1)"

L(b.)

with x, = 1/(n—1) again, just as in the “correct” result, (A6).
If, on the other hand, we take the most naive approach and replace » by nx in the
Hamiltonian, we find [16]

L(b;) = ——, (A12)
nx—1
and
2
X, = —. (A13)
- -

Thus, in this case, the three procedures do not lead to the same result. Handrich’s
conﬁg_uraﬁon average of the Curie temperature gives the same answer as Smart’s more
rigorous method, but the third and crudest approach gives what is probably a better
value for x,. ’ :

From Elliott [2], Eq. (10), we see that the constant-coupling method in the limit of
classical spin gives exactly the result (A7). )

APPENDIX B

Here we consider constant coupling for dilution using the Ising model. Changing
S8, to 10,0, and S, to $ ¢ in (Al), we obtain, instead of (AS),

2x n
; 1—x) = —, B1
1+e“"°+( %) n—1 (B1)
which is shown in Fig. 1.
We note that

1

== . B2
X, = — (B2)

~ Following Handrich’s procedure, t_hé Curie temperature equation for the undiluted
lattice, viz.
5
o= (B3)
I+e % n-—1

is used and its configuration average taken as above,qleading immediately to (B1) and (B2).
We note that if we were to express (B3) in the simpler, but equivalent form;
n—2

R (B4)
n
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and then take the configuration average, we obtain

- _ n—2
€7y = xe (1) = —, (BS)
which is quite different from (Bl). Also,
2 .
X, = — instead of (B2). (B6)
n

In general, when employing Handrich’s method, the Curie temperature equation, obtained
by equating two magnetizations, must be configuration-averaged without changing it
by any further algebraic operations.
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