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. The potential energy density, equations of motion, strain and stress tensor definitions,,
constitutive equations, and boundary conditions have been formulated for deformable-‘
ferromagnetic crystals in the linear Cosserats theory terms. The uniaxial material tensors.
dependence on the magnetic field and the magnetization of the equilibrium state has been:
shown. The coupled magnetoelastic wave propagation has been considered and the dispersion:
relation and the resonance conditions have been obtained.

1. Basic equations

The coupled magnetoelastic equations of motion are usually written in the following
way {1]

}51' = Tupe
1. or
'ig“ mi = gijij-hk,’ (1.1)'

where p; is a momentum density, the stress tensor T}, is a sum of the mechanical and.
Maxwell stress tensors

T = t;+Mph;,

, oF*
ki = Jiiey

i (t.2)

g is a magnetomechanical coefficient, M 9 — magnetization of equilibrium. state,
m; = M;— M} and h;= H;—H} are small deviations of magnetization and. efféctive

* Address: Instytut Technologii Maszyn, Politechnika Swictokrzyska, 1000-lecia Panstwa:Polskiego 7,,
25-314 Kielce, Poland.

(19)



20

magnetic field, respectively, and F* is a potential energy of ferromagnetic crystal. The field
h; consists of two parts

~ OF*
hi = hi—

(1.3)

om;
where h; = H,— H} is a deviation of internal magnetic field. The constitutive equations i. e.
| . i = ba(Uages M3 Mig),
h; = Ei(hi; Uigs My Mg,

are rather complicated. This is the reason to present the other form of motion and consti-
tutive equations. We are going to make use of new variable 6; in place of m;, where 6;
is an angle describing small deviations of magnetization:

mi = sljkole?' (1.4)

In this manner the basic equations will have the linear Cosserats theory form [2]. Let
us start from the deformable ferromagnetic crystal energy density which depends on the
magnetization, magnetization gradients and displacement gradients

F = F(M;; M, ;5 uy,5)- 1.5

If we admit the small deviation of displacement and magnetization, we can express the
energy in shape of Taylor series

F = F®—bdmy+tou, , + F*, (1.6)
where
w1 1 1
F* = L gy gt 1+ Cajtth g5 digMydy+ 3 Oy i . (1.62)

We assume that in the equilibrium state the displacement gradients are constants and
the magnetization gradients are equal to zero. The partial derivative (8F/0u;)o = fi
is an initial stress tensor and derivative —(0F/dm;), = bY is part of the effective field
fl? , 1. e.

b) = HY—H;. (1.7)

The pseudotensors which are equal to zero for crystals with central symmetry have been
omitted. The rigid rotation of crystal implies that the generalized forces OF|0u;; and
— 0F|om, are equal to the initial stress tensor #; and vector bY, respectively, i. e.

0 0
A+ Cugmy i = by
0 0
—dklmz—ckljuj‘,l'}'bi = bi 5 (1.8)
for

. 14 —
m; = &0 My, U = &0 Xy, 1.9
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where «, is a small rigid rotation pseudovector. By means of (1.8) we can obtain two
constraints between antisymmetric parts of material tensors

Uiy = Crjckiys dlci(lj> = Criijys (1.10)
where
Critj = Ckljlwioa dratj = dkzM?M?‘ 1.1
By means. of these constraints we can get the following form of potential energy F*
F* = 3 a8y + 3 bk (1.12)
where
& = Ui — 80 Ky = Oy 1.13)

are nonsymmetric generalized strain tensors. After taking into account that

o SF*  OF* OF* 1.14)
&.. , —— i —— — 5 .
T Sm, 86, 30; /)

we can present equations (1.1) in the following manner

pi = T %mi = & Tjx+ Ny pe (1.15)
The stress tensor
Ty = ty+MCh;, (1.16)
where
i = or = Aprjbiys (1.16a)
ou;

and the couple stress tensor

oF*
Ny =

B = bkilelj (1.17)

are nonsymmetric tensors. The two equations of motion should be supplied by Maxwell
equations (magnetostatic case)

hi5i+4n8ijk7€ijj\’12 = 0, hi = =@, (1.18)

The scalar ¢ is a magnetostatic potential. The following boundary conditions should
be in_'f_'orce on the free crystals surfaces S

"llchk‘s+ = nl’c(hk+47wijk9le?)lS_,
htang]S+ = hvtangls_: nl:ﬂi'S = Oa nl::NkilS = 0: (1'19)
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where nj, is a-unit vector, perpendlcular to the surface S. The last. condition is' equlvalent
to [1]

’ aF* 0
Mplprs 7 Mr |S = 0.
i,s
2. The material tensors for uniaxial crystals
The energy definition (1.6a) iinpliés the following symmetry of tensor a,;;
( 9°F . 2D
Uity =\ 77— = Qyji- .
kilj 6u,-’k0uj’l u=yo Lk L

We assume that for uniaxial crystals this tensor is a function of the symmetry axis unit
vector n; and the magnetization pseudovector M;. We also assume that this tensor is
‘made of two parts '

gty M) = Dy (1) + i (1, M), (2.2
where Ay = Ayji; = Ajy, is @ pure elastic symmetric material tensor and yuu; = Y.

is an anisotropy and magnetoelastic material tensor. After taking into account the symmetry
relations we can obtain the following forms of these tensors "

Aty = Ag(mn;0y;+myn 6y,)
+ Ap(mmy6;; + mn ;0 + 10y + nin i0y)
+ 4300
+24(On0;+ 040y ;)
+Asmnmng,
Veitj = ?1(5klM?M(j) - 5i1.'NIl(c)M?)
+ 2 M7 MG — nin; MMT)
+73(6,; MM + 5. My M)
+ 4, MEM? + nn, MY M)
+B16uM;M;
+ Bon MM
+ B MMM MS. 2.3)

Since the terms as mMPM{MS or Mgnnn; are pseudotensors they must vanish for
crystals with central symmetry. The coefficients f;, f,, 5 are those of expansion of
tensor (see: (1.10))

dy = P18+ Boeny+ B MM, 2.4



23

If we adopt a typical assumption [1] that the energy F° is a sum of the anisotropy
term F* and isotropy term f[(M?°)?], and if we take the anisotropy term in the form

F* = —1B(M°- 0y, @.5)
we find that
62F0 ’ 11 ag0n 70
OMOGMO = 2f "6 — B, +4f "M M. 2.6)
Since
J °F \ _ O°F° @
T \omom, ), eMPoMP’ :

hence, from (2.4) we can obtain

By=2f", Bo=-B, Bs=4f", 2.8

where f' = dffd(M®)* and B is an anisotropy constant. The constant 8, can be calculated
from the equilibrium condition [1]

H° = H°— 551\12—(:» = H+BMCngn;,~2f'M? = 0. (2.9)
Hence,
By =2f" = B(MO'(E;;)IEO' z (2.10)
The second material tensor
by = si,quspM?Mgockq,p 2.11)

characterizes the isotropic exchange energy. It means that the tensor Oqtp OUght to be
in the fofm

“kqlp - aklaqp. (2.12)

Hence,
by = [(M®)*6;;— MM e, (2.13)
The syminetric tensor o should have two independent coefficients for uniaxial crystals
Oy = 00 +a'nn,. (2.14)

The aproximative assumption that a = o’ is usually made.



24

3. Magnetoelastic wave propagation

Let us consider the coupled magnetoelastic wave propagation in the (x,, x3) plane.
Let us assume that the anisotropy axis has x; direction and the vectors A7° and H° point
in the x, direction. In this case we have three displacement equations of motion

Oily = tyy 3+t31,3,  Qy = typ1+1l353, 0y = ti3 141333, | 3.1
two angle equations of motion

MO
- —g_ 0; = —MO‘P,3+t23—132+N11.1+N31,3,

0
?91 = M°p +11,— 11 +Nya, +N33.3, (3.2

and one Mazxwell equation
@11+ 9,33 = 4nM(0y,3—05,1). (3.3)
The stress tensor components have the form
tiy = (Aa+240)e11 + (A3 +73Mo)ess + (A +43)ess,
tiz = Ag(e12+€20) + (1 +MoP1)ess,
ti3 = (A2 +4,) (613 +831)s
t21 = Aa(812+821) V1 Moeay,
trs = (A3 +73Mo)ers +[ A3 +244+(2y5+ By +B3)M Jezs
+[A+ A3+ (3 + 7)Mo less,
t23 = (o +4s) (623 +632) — (V1 +72)MGezs,
t3y = (A +44) (831 +¢453),
t3 = (A +24) (635 +823) + (s + By +72+B2)Moesss
133 = (A +43)61s + [+ A3+ (3 +70M5Jess
F(2A+4hy+ A3+ 244+ A5)es3, 34
and the couple stress tensor have the form
Ny = aM30y,y, Nip =0, Nyj3=aMybs;
Ny = O‘]\4391,2a Ny =0, Ny = “Mges,za

N;y = “M391,3, N3, =0, N3 = o‘M(Z)(’)ax,e.- : (3.5)
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If we assume the following form of solutions

u_, uj
0, | =| 00 |ExtKaxsmen ;=123 1=1,3 (3.6)
¢ ¢°

and if we eliminate the potential ¢ from Eqgs (3.2) we can obtain two sets of equations
[0+ K3(As+240) + K3(A, +A)Jus + Ky Ky(Ay + Ay + A3+ A)us = 0
K K3(hy + A+ A3+ A u +[— 0?0+ K3(hy +4g)
+ K324 +44,+ A3 +244+As)Jus = 0, 3.7

(—o*0+o"?0)u, +iK,BM30,—iK;AMgh, = 0,

] ioM, 4nMZK,K
iK,AM2u, + ( ; 2. 10<21 3) 0,

2 4nK3 2
+} D+(XK + —1%'2—' 1\4001 >= 0,

2

iK;BM2u,— | B, +aK>*+

)M303

(3.8)

ioM 47zM2KK
+( ° e 3)91=0

where

@'?0 = K3(Ay+BM3)+K3(Ay+ A4+ AMY),

A=7y+y,+B1+B2 B =79+

H,
D =2y, +2y,+B1+B2 P11 = YA B, =—-p, K= Ki+Kj3. 3.9)
0

The spin wave is coupled with elastic wave #, only. If the coupling terms A and B
were equal to zero the set of Eqs (3.8) would describe the noninteracting waves u, and
(04, 85). The spin wave frequency would be in the form [3]

2a02
o2 =% Af {4n[K3(B, +aK?) + K}(D +oK*)+(B, +aK?) (D+aK)K?}.  (3.10)
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The system (3.8) describing the coupled magnetoelastic waves has the solutions if the
determinant

i —w’o+w'?, iK,BM3, —iK,AM?
' ioM, 4nMIK,K 4nK;
iK3AMZ, o TR (D+ocK2+ . 3)M
g K (3.11)
dnK? ioM, 4nMZK,K
| ikBMEL - (ﬂ1+aK2+ —51) Mz, ey TEROMRS
K K
is equal to zero. Hence we obtain the following dispersion relation
o* —(0? + 0?0 + 0w —E = 0, (3.12)
where
2M2
-8 [4 KZKZ(T)— +B (er2+D)+A2(aK2+/31):| (3.13)
4
The bisquare solutions of (3.12) are as follows
i =2 {o?+ o' +[(0?— a2 +4E]V?}. (3.14)

From Eqs (3.8) one can also obtain-the following resonance constraints between the
displacement and spin waves amplitudes

[A*M2w*K2/g*P*+(BM2K, — 47:AM0K3K1/K2P)2]1'2

01,
—w?o+w'?o— A*MZIK5/P 1%}

U] =

[B>M30*K3/g 0 + (AMZK, —4nBMIKIK,[K2Q)*] "2
—w?o+w?o—B*MZK3Q

lus| = 1641,

0. My[B*o’K}/g* +M0(4nBK2K3/KZ — AQK; )2]1/2
il = )

PR

AR

M A*w?K2/g* + MA(—4nAK3K,[K* + BPK,)*]'/?
05 = - 0[ /g 0(2 i/ h,l_)_;l_., ], (3.15)
gH (0 ~w?)

K\ifhere
P = D-+aK®+4nK;3/K",
Q = pi+oK’+4nK} /K", L 616)

The dispersion relation (3.12) and constraints (3.15) can be used in discussion of the para-
metnc magnetoelas‘uc resonance excitation in thm deformable ferromagnetw ﬁlm ‘We are
going to present this phenomenon in the next paper. '
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