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A new mechanism leading to spontaneous metamagnetism is proposed in the form of
a model Hamiltonian involving the four-ion anisotropic term besides the common Heisen-
berg coupling. Calculations carried out in the molecular field approximation lead to an
unambiguously metamagnetic nature (like Mn;GaC) of the magnetization and phase diagram
obtained from this model. Moreover, a simplified form of the model Hamiltonian is pre-
sented, easier in calculations but nonetheless exhibiting typical metamagnetic behaviour.
Finally, a substitute operator with temperature dependent coefficient is proposed instead
of the anisotropic term. The resulting pseudo-Hamiltonian appears to be a very efficient
tool for preliminary thermodynamical calculations, giving also good agreement with the
typical features of the -temperature-induced metamagnetism.

1. Introduction

The term ““metamagnetism” is employed for two distinct categories of sharp phase
changes between antiferromagnetic and ferromagnetic (or the appreciably saturated
paramagnetic) ordering. The first category comprises the field-induced transitions observed
in considerably anisotropic collinear antiferromagnets. In 1939, this phenomenon was
named “metamagnetism’ by Becquerel [1]. In 1956, the same name has been used by Néel
[2, 3] to denote another category of magnetic changes. These transitions occur in the -
absence of an external magnetic field when the temperature varies. To distinguish the two
categories, we introduce the name “spontaneous metamagnetism” for the latter one.

Let us label the collinear antiferromagnetic phase as A and the ferromagnetic one as
F. In this paper, we shall be dealing with a two-sublattice spin system exhibiting the
A — F transition with increasing temperature, as observed in Mn,GaC or in FeRh. The
ole hypothesis hitherto put forward to explain this phenomenon [7] is that of Kittel [6],
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assuming the inversion of inter-sublattice exchange interactions. However, there exists
yet another theory of spontaneous metamagnetism due to Néel (see [2] or [3]) in 1956,
but it leads to F — A transitions only and is thus unable to explain the phase changes
which are the topic of our study.

The purpose of the present paper is to show that spontaneous metamagnetism. can
be described completely without applying the inversion hypothesis. Our alternative theory
assumes a model Hamiltonian, involving a uniaxial four-ions anisotropy term besides the
common Heisenberg coupling. Hereafter, we shall demonstrate that our model shows all
the features of spontaneous metamagnetism known from experiment.

In addition to the (H-T) phase diagram and other characteristics of a metamagnet,
we obtain some further results. Among others, the proposed model enables one to elucidate
Smart’s [4] supposition of the linear dependence of the Weiss coefficient on temperature.
It turns out to be a particular approximation of our model. Moreover, we shall derive
a simplified model, very useful for the rapid investigation of spontaneous metamagnetism.
As a special case, a pseudo-Hamiltonian containing the temperature-dependent: coeffi-
cients will be proposed, extremely convenient for the thermodynamical treatment of
magnetic phase transitions.

2. The model Hamiltonian

For the two-sublattice spin system we propose a Hamiltonian consisting of the follow-
ing two terms:

Ho=H+H, §))

H#' being an isotropic Heisenberg Hamiltonian with Zeeman term added (the applied field
H being aligned along the z-axis),

H = _%-"fzf,* Jff'Sf ' Sf'—% Z* an'sg ) Sy'—' fz* Jfasf ’ Sg—gﬂBH(; S;'F Z S;) (2)
B g g

9,9

and #' — the anisotropic term privileging the z-axis:

H' =% D SIS Shts T DogyyS;SiSi Sy )
T a,5.9".9" .
Here, the symbols £, f and f*' denote the position vectors of sites belonging to the sublat-
tice I, whereas g, g’ and g’ denote the same within the sublattice II. Summation Z* runs,
as usual, over all paits of sites. Summation Y ** is taken only over such sets of four sites,
where three sites are nearest neighbours of the fourth one.

The Heisenberg part is assumed to involve ferromagnetic coupling only. Such Hamil-
tonian is not by itself able to stabilize the antiferromagnetic state in any temperature
interval, not even at absolute zero.

The term given by Eq. (3) expresses a four-ions type of anisotropic coupling, written
in a form suited to the two-sublattice system. It prefers the z-axis, depends on the change
of sign of the magnetization of one of two sublattices and agrees with the symmetry of
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spin system. As a product of spin operators, this term ensures the stronger dependence of
its average (') on temperature than that of {#").

The term (3) can also be treated as a term of the power expansion of general spin
Hamiltonian [8]. For the case of one-sublattice systems we obtain the four-spin inter-
actions considered by Oitmaa [9].

In Section 3 we search for the behaviour of the complete model given by (1), whereas
in Sections 4 and 5 the properties of two slightly altered Hamiltonians, simplified with
respect to (1), are studied. An approximate approach has to be used throughout and the
preliminary step always consists in the decomposition of the Hamiltonian into an “un-
perturbed” and a “perturbed’ part:

H o= Ko+ Hy. @

Most of our calculations are carried out on the level of the molecular field approximation,
to be denoted hereafter as MFA.

3. Behaviour of the original model within the MFA

(a) Decomposition of the Hamiltonian

To investigate the properties of our model in its original form specified by Egs. (2)
and (3) within the MFA, we decompose the Hamiltonian (1) as follows:

Ho =+ NB(M} 4+ M)+ NAM My -—% NDM M (M} +M3)

DRI
ﬂ I

Hy = =L 3% J, (885085 +S7SF)—% Y * T, (8868 +S,S,)
— X* I [65788;+5 (S; S5 +8575,)]
+5 Y ** D, o [ 68568568%.085 + My6S70S55.08%
+(M8S; + MMy) (687685 + 655,685+ 68%.65%)
MP3SUS8S5+ 06857 +685)]+5 2. ** D, yy,[ 0850570S;,685.
+ M6S56S;.0S; + (MydSF+ MMy) (6S;0S;, +6S;.0S;. '
+8S%.082) + MiSSHOS,+6S% +6S5)]. (6)
When writing the above Hamiltonians, the following symbols have been introduced
NB = Y*J;p = 3%,y @)
NA =Y*J,, ®

ND = Y ** Dy = Y ** Dy oy, €))
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with: N — the number of sites in one sublattice, M;, My — some parameters yet to be
determined

Y, = PlgupH +BM,+ AMy—+ DMy(3M; + M7)], (10a)
Yu= ﬁ[g#BH‘FBMu'*'AMI_% DM1(3M121+M12)]a (10b)
Bt = kT, 8S7=S5—M, 0S;=S;—My (11)

The differences (11) may well be referred to as magnetization fluctuation operators, since
the parameters M; and My will turn out to be the average magnetization per ion in the
sublattice T and II, respectively. Thus, checking the term H, within MFA, we omit the
fluctuations themselves.

(b) Free energy .and magnetization

Using the formula .

1
F=-— i In Spe™#%° (12)

we now calculate the free energy within MFA. Introducing the following reduced magni-
tudes:

B p Ds? 5 F
n=--— . =, = o
A A NKT,
T gugH M My
i T 5 i el 13
T,’ ; 4 7 * s’ YT 42
we obtain
f= < [n(x®+ y*)+2xy ~3dxy(x> + y*)]
s+ (n+1)
—t{1n Si—nl.ﬁj—%)yl +In Siinl.l (s+3)ym . (14)
sinh 1 y; sinh § yy
where:
yy = E [A+nx+y—L y(3x*+y>)d] (15)
1™ s+1 tn+1) z ’
yg = E [h+ny+x—1 x(3y*+xH)d] (16)
T s+1 tn+1) ol '

The parameters M; and M; can be determined from the following conditions:

== (17
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and are found to be equal to
x = By, (18)

y = %) (19)

where # denotes the Brillouin function. With regard to Eqgs. (15) and (16), we recognize
Egs. (18) and (19) as the simultaneous implicit equations for the sublattice magnetizations
M; and My within MFA.
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Fig. 1. Magnetization process m(h), shown together with the diagram of free energy f(h), calculated for
t=05d=12,n= 10 and s = 1/2
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Fig. 2. Isotherms of magnetization, plotted for different values of ¢ with metastable and unstable parts
deleted (parameter values — as in Fig. 1)
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Fig. 3. Isoagres of magnetization (a) calculated for k= 0 and h = 0.1, (b) measured by Guillot [5] for
H = 5160 O¢ and- H = 28300 Oe¢

We use them to evaluate numerically some isotherms and isoagres (i. e. the curves
at constant field) of magnetization, choosing the case s = 1/2 for simplicity and taking
d = 1.2 and n = 10. To determine with accuracy the metastable parts of a given magnet-
ization curve, we find‘from Eq. (14) the intersection point of free energies fy and fp, as
shown at the double Fig. 1. The isotherms m(h) for several values of 7 are constructed
in such a way and plotted in Fig. 2, the metastable as well as unphysical sections being
discarded. Some isoagres, corresponding to the # = 0 and & = 0.1, are shown in Fig. 3a;
they exhibit the behaviour typical for spontaneous metamagnetics as known e.g. from
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measurements [5] made on Mn;GaC (Fig. 3b).
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(c) Phase diagram

To visualize the essential metamagnetic features of our model, we plot the phase
diagram in the (7, H)-plane. All transition points are found from the intersection of the
free energy curves f,(#) and fp(h) plotted at constant values of ¢

The phase diagram obtained (Fig. 4) occupies the quadrant 7 > 0, H > 0. The ferro-
magnetic phase reduces merely to the interval (Ty, T,) on the 7T-axis. Along the boundary
bordering the A-phase we find the first order transition. This line starts with the point

T

T

0 ) 05 g 10
t
Fig. 4. Phase diagram in the (7, H)-plane, calculated from the formulas of Chapter 3
\‘
(T, 0) and goes a long way rectilinearly with decreasing temperature. Just the same run
of the A-P line has been found ‘experimentally by Guillot in the case of Mn,;GaC [5].
At about T = 2Ty/3; the A-P boundary in our phase diagram becomes curved and goes
next horizontally up to the H-axis, obeying themselves the third law of thermodynamics.

At t = 0, we get from (18) and (19) the strict expression for the threshold field:
h, = —1+d. (20)

In the vicinity of zero temperature, however, we derive from Eq. (14) the approximate
formula

hap ~ x[x*(4—3x)d+x~2], (21)

assuming |x| & [y|~ 1 and taking into account that, practically, In(2 cosh z) = z holds
when z > 1.

The area lying beyond the A and F phases (commonly regarded as paramagnetic)
is denoted by the symbol P in Fig. 4. No intermediate (e. g. oblique) phase occurs within
our model, therefore, the boundary 4,p(2) is identical with the transition line between the
phases A and P.
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4. Simplified model and-its properties within the MFA

(@) Derivation and decomposition”

As a consequence of the four-operator nature of the part #' of our Hamiltonian,
we have to calculate in any approximation better than MFA the highly inconvenient
four-spin correlation functions. We shall prove below that the Hamiltonian 4’ can be
simplified in such a manner that only two-spin correlation functions can occur in further
calculations.

We decompose the term #’’ into two summands:

H = RV (22)

provided the second summand is sufficiently small so that it can be neglected. From among
the many possible ways of decomposition, we propose here the following procedure:

B = T Dy (S SIS T Dy (SiS508385  (23)
V = 3T Dy SSyS5S5 = (S5 S5+ T Doy S5SUSH Sy —(SyS5)). 24)

The above decomposition fulfills the required inequality (V) < (#"'). Introducing the
notation

Z** Dyypgr = Z** Dyrygr = Dy (25)
o g9
we rewrite Eq. (23) in the form
# = 1Y% Dy s (uy+up)SSE, (26)

where s%u; and suy are the correlation functions (S7S7%) for the I and II sublattice respec-
tively, assumed to be independent of site. '
Instead of the complete Hamiltonian (1) we have to consider the simplified operator

= H @27
Below we give some results which may be obtained from Eq. (27).

(b) Free energy and magnetization

Let us derive the free energy formulae for the Hamiltonian (27) in MFA. To do this,
we split (27) into two summands

.7? = %704'9?1 (28)
choosing
Hy= =LY% T, (857055 +S;S)) % 3 * J,,(85;08; +5, Sy)

— Y T (08505744 S5 S +1 87 SF) 44 T Dy (uy+ uy)6S5OSE. (29)
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The part #, now involves all operators S+, S— and §S°, which ensures the MFA (see
Section 3). The remaining part is then equal to

Hg =% B(M12+MIZI)+AM1MII—'§_ Ds® M My (uy + uy)

1.
Ry Y} Sz 1’11 Sz 30
AORDY 2

Inserting 3, into the formula (12), we obtain the free energy in the MFA:

P = ) o2 det )
— {n(x x U+ u
2(s+1) n+1 4 4 G
~t|In Sin},l‘(sff)y-‘ 1 S0 (ST%W!‘ : (1)
sinh 5 sinh 5 i
where
3
= — ———— -3 d], 32
i e t(n+1)[ +nx+y—3 y(u+up)d] (32)
y 3 [h+ny+x—3 X(u+u)d] (33)
= — n - X .
Yu s+1 Hn+ D) Y X—7 XUy Uy
Imposing the stationary conditions
6~ of
aJ’I 6)’11
we obtain the following implicit equations:
x = (), (35)
y = B(w- (36)

Together with (33) and (32), Eqgs. (35) and (36) obviously represent simultaneous equations
for the sublattice magnetizations. Preliminary numerical calculations at constant 4 yield
the temperature dependence of the total magnetization m = 4 (x+y) in a form quite
similar to that obtained in Section 3.

(¢c) Threshold field and transition point -

Equating both free energies f,(%) and fp(h) at & = 0 we get the same formula for
the threshold field as in Section 3:

he = —1+d. (37

Taking |x| ~ |y| ~ 1, we find the following equation of the A-P boundary in the vicinity
of absolute zero:

hae(t) = x(2—x) [3 (u+up)d—1] (38)

the transition field A,p depending indirectly on temperature via x(¢), u(t) and wuy(z).
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Fig. 5. Metamagnetic transition temperature fy, plotted: (a) as a function of d, (b) as a function of #,
according to Eq. (42)

Let us now determine the point 7, of spontaneous (i.e. for 2 = 0) transition. In this
case we have u; = u, = u and in the antiferromagnetic phase y = —x strictly. Thus,
from Eqs (32) and (33), two simple equations result. At ¢ = fy they go over into two
identical ferromagnetic equations, because the effective interlattice interaction vanishes:

1—du(ty) = O. (39)
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Within MFA, the spins are uncorrelated and therefore u = x2. Thus, we obtain for
ty the equation

1-x%d = 0, (40)
where x(t,) fulfils the relation:
x(ty) = tgh (—::i(g‘t)M : 1)
By (40) and (41), we get:
b= — “)

n+1 artghw’

with w2 = d. Some typical curves of ty(d) at n = const as well as ty(n) at d = const are
plotted in Fig. 5. They characterize well the dependence of the transition point £y on the
parameters d and n of a given sample. -

(d) Connections with Smart’s hypothesis

The simplified Hamiltonian # enables one to understand the nature of Smart’s
hypothesis [4], which assumes a linear dependence of the molecular-field coefficient on
temperature.

Within MFA we have

u+uy = x>+~ (43)

In a weak external field, the sublattice magnetizations are almost equal: x*> = y*. For
temperatures of the order of magnitude of the Curie point, molecular field theory yields:

e oa(l—t) - (44)
where
T (s+1)2_
3 2 2
(s+1)"+s
and, consequently, we have
‘ (ul+un) = 20((1-—t). (45)

We now insert this expression into Eqs (35) and (36) and obtain the following interlattice
Weiss coefficient

1—oad(1—1) (46)

which corresponds to the hypothesis of Smart. We see from the above derivation that
Smart’s hypothesis is the better the nearer we are to T..
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5. Further simplification: the pseudo-Hamiltonian
(a) Motivation
With the aim to find an efficient tool for rapid calculations, we search for some

further simplification of our model Hamiltonian. It appears that the role of an appropriate
substitute for the Hamiltonian #"' can be played by the operator

G = 3" Dy 21 —1)S3SE, (47)

where Dy, is a constant coefﬁment Namely, we shall show in the present Section that the
operator G when inserted instead of "' into the free energy formula gives the same ex-
pression as that which results from Eq. (31) if the approximation (44) is used. Therefore,
we can treat the operator #’+ G as some kind of temperature-dependent pseudo-Hamil-
tonian which is very convenient in the thermodynamical description of spontaneous
metamagnetism,

(b) Free energy and magnetization

Substituting the pseudo-Hamiltonian #’+G into Eq. (12) we get the following
expression for the free energy:

33 1 (n_ , ;
= — ———{— (X + V) +xy[ 1 —ad(l—t
f s+1n+1{2(x y)+xy[ ( )]}
—tln Sinl.l (S+%)’71 i Sinl.l (Sj'%)nll ’ (48)
sinh %, sinh 3 77y
where:
s ot = (1= T},
nx - -
"= 1 s ) i
L R e (49)
P S n X{L—ol1—
M= 1 1t D) Y
o o rass |

t=04

S \\(
X \\ >

f M}\\\

Fig. 6. The free energy f(%), calculated within the s1mp11ﬁcat10n (47) for several temperatures (n = 3,ad = 2.5,
metastable parts omitted)
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Fig. 7. Isotherms of magnetization, plotted for the same values of temperature as in Fig. 6 (n = 3,ad = 2.5)
as well as for ¢ = 0.6, 0.7, 0.8, 0.9, 1.0 and 1.1
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Fig. 8. Isoagres of magnetization, for # = 0 and h = 0.1

The state of equilibrium is found in the standard way from the stationary conditions,
and we obtain the simultaneous equations for the sublattice magnetization:

x =%y, y= B(m)- (50)

Now, using Eqs (49) and (50) and taking s = 1/2 for simplicity, we calculate the
isotherms of magnetization m(h) for the chosen values d = 0.83 and » = 3 in quite the
same way as in Section 3. They are shown in Fig. 7. The transition field values are
determined directly from break-points of the free energy (see, for example, Fig. 6 plotted
according to Eq. (48) when ignoring metastability).
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Next, the isotherms obtained permit the construction of the isoagres m(t), plotted
in Fig. 8 for three different values of 4. The isoagres, like the isotherms, exhibit behaviour
typical for spontaneous metamagnetics.

(¢) Phase diagram

Plotting many isothermal curves of the free energy f(/) like those of Fig. 6 we obtain
graphically the {ransition points. In this way the entire H-T phase diagram is determined
as shown in Fig. 9.

Two most important points of this diagram can be expressed algebraically. First,
the threshold field, determined as usually by equating f, = fp at £ = 0. It appears to have

=
0 05 4, 10

¥ >

Fig. 9. Phase diagram in the (7, H) plane, calculated on the simplification (47)

the value #, = ad—1. Second, the spontaneous transition temperature ty, derived from
the vanishing of the inter-sublattice coefficient in Eqs (49) for the case & = 0 and x = —y.
It is found to depend solely on d:

1

w=1-—. 51
e 1-— . 6D
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For low temperatures, we easily derive the equation of the AP boundary:
hap = x(2—x) [o(1—t)d—1]. (52)
Within the region where x ~ 1 holds, Eq. (52) describes obviously a straight line with
the slope

dhap

= —ad.
I o (53)

In contrast to Fig. 4, the prominent slope at 7 = 0 due to the approximation (44) disagrees
with the third law.

The validity of the approximation x ~ 1 reaches very far in practice. For instance for
the case d = 0.83 and n = 3, the boundary in Fig. 9 is rectilinear up to (1/2)7,. Near
Ty this line exhibits a slight curvature. This discrepancy against Fig. 4 does not exceed
the accuracy of measurements made up today.

6. Conclusions
(a)/Properties of the original Hamiltonian

As follows from Section 3, the addition of the four-ion anisotropic term (3) to the
common Heisenberg ferromagnetic exchange is sufficient to stabilize the antiferromagnetic
state at low temperatutes and leads by itself to the spontaneous A — F change of state at
some temperature Ty. The isotherms (Fig. 2) as well as the isoagtes of magnetization
(Fig. 3) provide further evidence of metamagnetic behaviour of the model proposed in the
present paper. The most instructive summary of the essential features is given by the (T, H)
phase diagram (Fig. 3). Note that the entire A-P boundary is of the first order.

Although the present results have been obtained in the mean-field approximation
and for some chosen values of the coupling parameters, they manifest unambiguously all
the typical features of spontaneous metamagnetism. In other words, our model describes
a new mechanism creating the temperature-induced-A — F transitions, free of any further |
phenomenological assumptions such as Kittel’s exchange inversion hypothesis.

Obviously, the parameters D of our model, similarly to the exchange integrals in the
Heisenberg term, are also the phenomenological constants. For this reaéon, no attempt
will be made to fit the theoretical results quantitatively to the experimental ones, since
the data are as yet insufficient.

(b) Remarks as to the simplified Hamiltonian

In Section 4, we have introduced the simplified version of the proposed Hamiltonian
with the aim to avoid the four-spir correlation functions occurring inevitably in all calcula-
tions (except within MFA) based on the original form (3). The quality of a theory starting
with s depends, of course, on the manner in which one approximates the two-spin cor-
relation functions occurring there. Tentative calculations carried out within the MFA
show very good conformity to the results of the Section 3. It seems that the simplification
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S may be used in many cases to predict the behaviour of metamagnetism originating in
the mechanism proposed here.

The simplest assumption approximating the correlation functions in the whole interval
(0, T) is their proportionality to T,— 7. Just this assumption leads immediately to Smart’s
hypothes1s '

By having recourse to Eqs (13) let us rewrite the threshold field (20) in terms of the
original parameter characterizing a given substance:

1
H, = — (Ds*- A). (59)
gip .

The occurrence of spontaneous metamagnetism (or Ty > 0) is possible only if H, > 0.
In this way we obtain a simple condition for the existence of the temperature-induced

transition to ferromagnetism within our model:

D > As2. (55)

The inequality (55) is merely a necessary condition, deduced from the zero temperature
properties. That is why it does not involve the intra-sublattice coupling B, which plays
no role at 7= 0.

The formula (42) for the transition temperature permits the detailed discussion of
the coupling parameters for a given #y. It shows, moreover, that a further necessary condi-
tion for the occurrence of metamagnetism, namely Ty < T, is always fulfilled within our
model on account of |fy| < 1 for every case (see also Fig. 5). Also the Eq. (42) requires
B > 0 since otherwise Ty = 0.

© Comments on t'he pseudo-Hamilionian simplification

.On accepting the 51mp11ﬁcat10n proposed in Section 5, a very efficient operator
#'+G is gained at the expense of.the loss of its true Hamiltonian nature. It replaces
successfully the original Hamiltonian in all thermodynamical theories.

The operator G may be regarded as deriving from 7", since direct substitution of
the approximation (45) into s’ gives precisely G. Thus, the adoption of G is closely
related to Smart’s hypothesis. The violation of the third law of thetmodynamics within
this simplified model is due to the approximation (45) which is a rather unappropriate
one for low temperatures.

-

(d) Various remarks

Contrary to the theories using 'only'the Heisenberg model modified by the exchange
inversion assumption, all calculations based on the proposed model Hamiltonian permit
the study of both the critical as well as the high-temperature properties of a spontaneous
metamagnets.

It is perhaps worth while noting that the condition (55) imposed on the constant D
responsible for the contribution of the anisotropic term is formally of a form analogous
to the condition necessary for the occurrence of field-induced metamagnetism: K* > AM?,
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where K is the common anisotropy constant and M — the saturation moment of a sublat-

tice. Thus, magnetic anisotropy plays a very similar role in both categories of metamagnetic
phenomena.
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