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The stability conditions for a normal ferromagnetic Fermi liquid are discussed. The
simple model of band ferromagnetism with spherical Fermi surfaces is used. The inequalities
guaranteeing the stability of the ferromagnetic Fermi liquid are derived. These inequalities
are different from those obtained by Czerwonko using Leggett’s method.

The problem. of stability conditions for a normal paramagnetic Fermi liquid was
considered originally by Pomeranchuk [1] using a phenomenological Landau approach.
The microscopic proof of those conditions was given by Leggett [2]. Czerwonko [3] extend-
ed Leggett’s results for the case of a normal ferromagnetic Fermi liquid. Recently the
same author [4] in an independent microscopic approach got from the stability conditions
for a paramagnetic liquid a sequence of inequalities different from those obtained by
Leggett {2]. An analysis of these inequalities shows that they are fulfilled only when the
Pomeranchuk inequalities hold. In paper [4] it was also suggested that the equivalence,
from the point of view of the inequalities between Leggett’s and the author’s approaches,
is related to the specific spin symmetry of the effective interaction for paramagnetic liquids.
This symmetry causes the spin matrix of an effective interaction for different / to commute.

The purpose of the present paper is to examine the stability conditions for the normal
ferromagnetic Fermi liquids. We consider a simple model of band ferromagnetism. It
will be assumed that we have a single band and that the Fermi surfaces are spherical for
both spins. In this case the autocorrelation functions transform similarly as in paper [4].
According to [4], the autocorrelation function, for an arbitrary vertex can be represented
for |w|, kv, < Eg, where Ep denotes the Fermi energy and v, — the velocity of particles
with spin o on the Fermi sphere, as follows for details see e.g. [2] and [5]):

Kefo) = K¢~ ¥ % &5.83F0) [0 3 128 (ko) x SE (R 1S, (1)
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where K’ is the nonquasiparticle part of the autocorrelatlon function, which is equal to

the (uncommutatlve) ‘w limit” lim lim of Ké(kco)
@-0 k=0

Y(ko) = a20(ES—Eo,p - F) [0p - -] !

E% —denotes energy of a particle with momentum 1? and spin o, p — the unit vector directed
along the momentum E, 6 — the Dirac delta function, 6%’,[, — the vertex & in the w-limit,

%fi-l;,(l-c’co)——the four point function for the energy-momentum transfer w, K, a, — the
discontinuity of the density of particles with the spin o on the Fermj sphere.

Taking into account the relations between the functions f o3 and &z, and their
“w limit” respectively, which are analogous to those given in [4], and choosing ¢ as
a linear combination of normalized spherical functions Y,,(p):

P = ;y‘i‘fﬁ(ﬁ) Y,.(P) )

we obtain instead of (1) the following equation:

Kilf @) = Ki+ Z Z wa 2l (refo

X[I—FQ(k, )] YnP )5 ops 3
where v, denotes a dehsity of states on the Fermi surface of the a-th spin, {g(p, 5’))-1;;;
dQ (d =
= JT —g(p, 7)), and the operator O(k, w) 1s defined as follows:
T

Ok, 0)2(5) = (05 - ) [w—2p - ] }2u(D).

The operator F describes an effective interaction between quasiparticles. For the considered
model, F can be expanded into a series of the Legendre polynomials:

F(E,’pf')'=[ ] Z(ZlH)Pz(p p)[B ’g] @

A, By, C, are called the Landau parameters for a ferromagnetic liquid. Without any
loss of generality we can choose k along the z-th axis, in such a case (;:5 - k) = kz. The
multiplication by z has an operatorial character. Such a choice will be applied by us in the
subsequent part of this paper.

Introducing thé notion

4 3
vvxaay o . -
S = QU-FOIT =W, ®)
1

Eq. (3) can be written as follows:

Kk, 0) = K¢+ Zﬂ ;x:‘x:f{<n:(ﬁ)Wn,m(i'»;;}ap- 6



183

The operator W is a square matrix, with the elements:
Rv,z Rvz 77!
= 1-F , (7
1—Ruv,z L—Ruvz |,
where R = k/o. Expanding W,,; into a power series with respect to Rv, we obtain

- 2 _ v - -
W,y = Z_RZS{ﬂ ! Zﬂ 2202+ 22 02T Fzog+ 2% 20 T Fzu,, (14 F)zuy,
8 P25 +res P25=1

+ o tzvFrog,  (L+F)zvg, _, - vg(L+F)zvg} = Y R¥WE, ®)

8

The odd terms with respect to R vanish as a result of the inversion invariance of an auto-
correlation function. One can easily get the operator W for different s. Using (4) we have
for s = 1 in matrix form

i+4 ¢B

w = vzz|:
4B F(+0)

In the same way, after simple but long and tedious calculations, we obtain for s = 2

1+A4 qB 1+4 B 1+4 gB
@) _ 4
i ”lz[qB q2(1+C)]Z[B 1+C]Z[qB q2(1+C)]Z

= vizwizwzwiz. (10)

q
J Z, Where - )]

Uy

According to [4], and using (6), (8) the quadratic form
) 2 KR DIV O Yn 5 e (1

have to be positive definite for every s, /, I and m.
In further calculations the following recurrence formula [4, 6] will be used:

ZYlm(;) = bl,mYl+ 1,m(§)+bl—1,mYl-—1,m(§)a (12)
where 7
T A+ —m?

k1
53 [(2z+1) (2l+3—):| '

It is seen from (11), (12) and (13) that m will occur in the inequalities only in the coeffi-
cients b, ,, because these inequalities will be considered for fixed m, the index m in the
subsequent formulae will be omitted. Taking into account (4), (12) and (14), and the
addition theorem for spherical functions we obtain instead of (11) the following expression

for s = 1:

1+A4,., qB;-

2p2 « B 1~1 -1

viR*<b;_ b, xixi_

Z Zﬁ 1 { I—-1Y1-2/MM Z[qu_.L q2(1+Cl_1)]
1+4 gqB 1+4,., qB,-; i
+xaxﬂ' b2 I+1 I+1 ]+b2_ [ -1
! ll: 5 [qu+1 *(1+Ciiy) S 279 *(1+Cp-y)

1+4;., 4B
b b o 141 1+1 } 14
1+10142X1 X142 [qu+1 a*(1+Cysy) Y

(13)



184

After simple calculations we find that the quadratic foim (14) is positive definite if the
following inequalities are fulfilled:

144, >0; (1+4)(1+C)—B>0. (15)

These conditions are identical with those obtained by Czerwonko in [3].
In a similar way we can find for s = 2:

4 4 a B
R0} Z Z xlxl—4{bl—1bl—2bl—3bl-—4w?—swl—2w;l—I}aﬂ
I oap -

o..B 2.4 q 2 q q 2 q q
+xlxl—g{bl-{1bl-—2[bl Wik aWWi— 1+ bi Wi Wiwi g bWl Wy wi g
2 d o L. B Rt a 212 g a
- bio Wi sy Wi Tl XTXT (B Wik wiwie s + BUDEL W Wiy oW
+ B7bE  [wio ywwiy s Fwil wwie T4+ b2 b7 Wi pwy Wi, + bR wi wwd )
1011 Wi—-1WiWi4q 1+ 1WiWi—y =201 Wi oW Wi T D1 Wiy WIW g g

% B 2 4 a 2.4 a 2 4 q
+x7x05 {1 [brm Wi owiwly s +brwi ywiwly s+ bl Wi i oWl

'{“ b12+ gW;l+ Wi+ ZWfﬂr_s]}uﬂ + XXy a{biby 1 114 2By Wi+ 1Wi 2Wf+ 3} (16)
where :
I 1 +Al Bl [ :41 1+Al qu .
0 ! e &l 17
Wi [B, 1+ C,] Wi qB, 7 (1+C) a7

Let us consider the case / = m = 0. Then all terms containing b,_; vanish and instead
of (16) we get:

4 4 a Bp27p20.4. g 2 q
R*%§ Y Y xExobo{bowiwew] + biwiw,wi},,
2 2l =

+x5x5bob {bawiwowd + biwiw,wi + bgwlfwz“’g}a;p + xéXﬁboblbzba{W‘inW%}w- (13)

The quadratic form (18) is positive definite if and only if all its principal minors are strictly
positive. This leads to a variety-of inequalities which are equivalent to the stability condi-
tions obtained in [3]; however, there appears also the inequality, for which the stability
conditions [3] are insufficient. Namely, the positivity requirement of the matrix determi-
nant in the second term of expression (18) after introducing the numerical values of the
coefficients b, and after using (17) the following inequality holds:

g*[(L+ A7) (14 C) = B3] {[3(L+ Co) +78 (14 C)] [ (L + o)+ (14 4,)]
~(3 Bo+1%5 B2)?+ (%)’ [(1+42) (1+C5)~ B3] [(1 +45) (1 +C3)— B3]
+355 [+ A4) (1+C) =B [(1+A4) (1+C3)+(1+43) (1 +C,)—2B,B,]
35 [(1+ 4By~ (1+43)B,] [(1+A9)B, — (1+4,)B,]
+% [(1+C)Bo~(1 + Co)B,] [(1+C5)B, —(1+C1)B,]
+3% [(1+40) (1+C2)—BoB, ] [(1+A4,) (1 +C3)—BB;]
+5%5 [(1+42) (1+Co)=B,B,] [(1+45) 1+ C,)—B,B;]} > 0. (19)
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Let
1440=1-y, Bo=1n 1+C,=n,
1+4, =, By =y, 1+C, =2y,
1+4, =4, By,=n 1+C, =2y,
1+A43 =1-n, By=1pn, 1+C;=n. (20)

From the stability conditions [3] we have
(L=n)y—n? >0
2112.—112 >0
2'12_’,’2 >0

(A=mn—n* >0 e @

1-n>0

7 >0

That means that for 0 < # < 4 the stability conditions [3] are fulfilled. Substituting (20)
into (19) we get the following inequality for #:

— 35+ 2%’ + s+ 3 + [+ A5+ () + 5 =% > 0. (22)

This inequality is fulfilled for < 5 < ¥. Comparing this fact with (21) we see that for
0 < 7 < % the fulfilment of the conditions [3] does not guarantee the stability of the
ferromagnetic Fermi liquid. This fact is connected with a lower symmetry of the consid-
ered system and confirms Czerwonko’s suggestions [4], that the equivalence of the inequal-
ities given in [2] and [4] arises from the specific spin symmetry of the effective interaction
for a paramagnetic liquid. It is easy to prove that when we substitute the interaction (4)
with the effective interaction for the paramagnetic liquid, i.e.

s 3 | A4~B B
F= Z(ZHI)P;(p‘P)[B; B Alz—Bz]. i

[}

We can get inequalities identical to those obtained by Leggett [2].

It is seen from (19) that for s = 2 the restriction only to the terms with [ = 0 leads
to a very complicated inequality, from which we cannot obtain any direct restrictions
on the Landau parameters. For a higher J, as well as for higher s, the inequalities become
more complicated and so does their discussion. On the other hand, it is rather clear that
these inequalities lead to restrictions on Landau parameters of our problem independent
of the usual Pomeranchuk type inequalities.

The author wants to thank Professor J. Czerwonko for suggesting the problem and
for many helpful discussions.
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APPENDIX
‘We will see that for all s the operator W (see Eq. (8)) has the form:
WS = o3 zwizwzwizw -+ zwzwlz, . (A1)

where z occurs 2s times. The proof exploits the method of mathematical induction:
(a) For s = 1 and s = 2 it was proved (see Eqgs. (9) and (10)),
(b) The element W " of the matrix W®*" can be obtained in the following way

wsth = v"‘ (sz + 2202 F 5+ 20, F 15205+ 20,F ,, 20, F ) Wss), A2
b Al B

where 7, 6 = 1 or 1. It is easy to see that we can get the following relation between s+
and W

WD = 2zwlzw W, (A.3)

In order to check it one has to find from (A.2) all elements of the matiix W™V, This
ends our proof.

The form (A.1) of the operator W is very convenient. Taking into account (12)
and (13) it is clear that expression (11), for every s, is a sum of products of matrices.
In each of the products we have 2s—1 matrices of the type (10) and Landau parameters
with suitable / appear in these matrices. Each of the products appear with a certain coeffi-
cient. Such a shape of the quadratic form (11) allows us to obtain immediately the necessary
conditions of the stability of the ferromagnetic liquid. Namely, from the condition that
for every s, [ and I’ (11) have to be positive definite; we can get that each of the matrices
has to be positive definite, which means

144, >0; (1+A4)(Q+C)—B:>0 . (A4)

for every I. These conditions are identical to those obtained by Czerwonko in [3]. How-
ever, as was shown above, these conditions are not sufficient. It is a consequence of the
fact that the sum of positive definite matrices does not have to be a positive definite matrix.

The form (A.1) of the operator W allow an immediate proof of the Pomeranchuk
inequalities. This proof is a generalization of Czerwonko’s proof [4] for s = 1 and s = 2.
We consider a paramagnetic liquid. Let F denote exchange or the direct part of the dimen-
sionless effective interaction. The operator W has the form:

WO = v*2(1+F)z(1 +F)z -+ z(1+F)z. (A.5)

After similar considerations, as for the ferromagnetic liquid, one can obtain that a neces-
sary and sufficient condition of the stability of the paramagnetic Fermi liquid is the ful-
filment of the inequality

1+F, >0 (A.6)

for every I It is just the Pomeranchuk inequality. The sufficiency of the conditions (A.6)
results from the fact that a sum of positive terms is also a positive expression.
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