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SPIN COLLECTIVE EXCITATIONS OF 3He-B
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The possible spin oscillations of He-B have been found and identified. The influence
of temperature and of the Fermi-liquid interaction on the spin susceptibility has been discussed
in details. All considerations are valid in the collisionless regime.

1. Introduction

In discussing collective excitations of the kind that can appear in superfluid *He — B,
we must not ignore the symmetry of the system and the symmetry of arising excitations.
The rotational symmetry of the system allows one to classify the collective excitations,
connected with the existence of the pairing forces, in terms of two-particle states, described
by the spherical tensors (cf. [1]). For pure P-pairing, the admissible two-particle states
are completely described by nine spherical tensors B o 0 << J << 2, M| < J (see appendix).
The symmetry properties of these two-particle states are strongly connected with the
type of colléctive excitations. This was often overlooked by some authors, resulting in
incorrect predictions. ' '

The problem of the dispersion of the soundlike waves was discussed by many authors
[1-9]. The results of these papers agree with each other and with experiment to a satis-
factory degree (cf. [6] and [10]).

Quite another situation appears for collective excitations connected with fluctuations
in the spin-density. The authors [3, 5,7, 9, 11-14] are in agreement about the collective
excitations with.J = 1." On the other hand, the collective excitation with J = 2 are
the theme of the frequent and contradictory considerations (cf. [3, 5, 7, 11, 13, 15]).

The aim of this paper is to discuss this problem once again; taking into account
the symmetry of the system and the symmetry of collective excitations.

 * Address: Instytut Fizyki, Politechnika Wroclawska, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,
Poland. )

(173)



174

2. The basic equations of the theory

The calculations presented here are based on the Larkin-Migdal-Czerwonko theory
[2, 16], valid in the collisionless regime. The phase B of superfluid *He is identified with
the BW state [17]. The basic equations of this theory which allow one to obtain the spin
susceptibility y;; have the form '
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where 1 = 17p,— the anomalous vertex function, g7, 7, B, B— the even and odd
parts, respectively, with respect to p, of the normal vertex function and the antisymmetric
Fermi-liquid interaction

B

B+B = Y 21+ DbP(PD),
=0

where b, = F/(21+1) = 1 Z,/(2I+1), comparing with the other notations used for the
Landau parameters, f¢, — the pairing interaction, {...) denotes the averaging over the
Fermi-sphere. Kernels L, M, N; O will be defined later. (For details see [2, 14, 18].) Using
the gap equation for pute P-pairing, we can rewrite Eq. (3) in the following form

3. Spin susceptibility for T = 0 and kv <24

Let us first discuss the spin susceptibility if the Fermi-liquid interaction is neglected.
The kernels L, M, N, O now (i.e. when kv < 24) have the form (cf. [2] or [19])
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where

arc sin o w dg
g=———55; and h=_——.
o(l—w”) 2¢ dw

In this section we assume that w and kv are measured in units of 24. In the acoustic limit
(0, kv €24) g = 1 and h = 0 (cf. [2]). Substituting the kernels L, M, N, O given by (6)
into Eq. (5) and after some calculations, we obtain the equation
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Since our system does not distinguish any extra directions, the solution of this equation
can be given only in the following form (cf. [12])

T‘iin = Togimnlgmlgj + Tl(sijmk\mién + Smjniemi%i) + TZ(sijmiem’%n o) gmjni%miéi)' (8)

Comparing the symmetry properties of these three tensors with the symmetry properties
of the spherical tensors (A4) we see that 1, is connected with collective excitations of the
type J =1, M = 0,7, with J = 1, M = +1, and 7, with J = 2, M = £ 1. The breaking
of the symmetry of the system, by distinguishing the direction k, causes excitations with
the same M not to be independent, they are mutually mixed. Hence, both 7, and 7, are
connected with excitations to the states J = 1, M = +1, and J = 2, M = =+ 1. However,
as long as kv < 24, this effects does not influence the dispersion laws, and they have
the form (cf. [3, 5, 7])

w*=1tkw? J=1, M=0

w* =%k J=1, M= 1

2

w? = +£k—[a) +h(@*=2)]; J=2, M= <+i
54 (O 7 ) £ 1.

o

On the other hand, there are no more tensors for which the solutions of Eq. (7) are not
equal to zero. In order to obtain some other excitations we have to distinguish a new
direction (cf. {1, 10, 11, 13, 15, 20, 22]).
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Substituting the solutions of Eq. (7) into expression (4) we obtain

kzvzgf% g‘_%)k\ii%j_
o* =1 P0*(1+h)

Xij = 3/113"{

kzvz(wz — ) (11—0 g "%) (5ij - iéilej) } (9)

T @0~ =% 0+ ho -+ (0 =2 (1 + )]

As we see, for the system with the BW state (J = 0), except for one longitudinal (J = 1,
M = 0) and two transversal (/ = 1, M = +1) gapless modes, two transversal modes
(J =2, M = 1) with the gap can be excited. It is remarkable that the acoustic limit is
equivalent to the appearance of collective excitations with J = 1 (cf. {12]).

The pairing interaction can be expressed by means of the spherical tensors (cf.(A2)).
Such a procedure makes it easier to identify the collective excitations.

4. The inclusion of the Fermi-liquid interaction

In order to include the Fermi-liquid interaction we have to replace the right-hand
side of Eq. (7) by the expression:

s B.n A A A 2,2 S, A A A A ~ A
_3w81km<g~’;pmpn>_3kvstkm<g'1;pmpnpr>kr+3"';)— hatkm<9'§pmpnpqpr>qur (10)

Using Eqgs. (1) and (2) we can express all these averages by means of some combinations
of the anomalous vertex function, the unit vector k and the Levi-Civita tensor. The obtained
equation is similar to Eq. (7), but now very complicated coefficients appear. However,
this fact does not change the character of the solutions, allthough effects strongly depend-
ent on the Landau parameter can appear. Hence, the Fermi-liquid interaction introduces
quantitative changes only.

Since our calculations are performed with an accuracy up to k2v?, only averages of
the following types can appear

S ~ ~ n ~
elllzl3<'9-l}'4pm1 — pmr>klskls’ (11)

8111213<g—lj413m1 ﬁmr>i€l5’ (12)

where two of the indices {/, m} are free, and others are paired (summational convention).
If we insist that m, # m, if s # ¢, then expression (11) vanishes if » > 4, and expression (12)
if r > 3. Now, using the averaging formulae given in appendix B, the expressions (11) and
(12) can be obtained from Egs. (1) and (2). Since the kernels L, M, N, O are analytic
functions of w and ke, the spin susceptibility, in its final form, depends only on five Landau
parameters by, ..., b,. The calculations described above are Very complicated and they
have not yet been carried out to completion. The complete solution of this problem exists
in the acoustic limit, and was given by Czerwonko [12] (cf. also [9]).
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5. Non-zero temperatures

For non-zero temperatures the kernels L, M, N, O become more complicated (cf.
[4, 21, 23]). They are not analytic functions of » and kv.(except for the cases w = 0, cf. [18],
or kv = 0). This forces us to impose restrictions on the Fermi-liquid interaction (cf. [14]).
Some methods for such calculations were given in [4, 7, 8, 11, 13~15]. Though these calcula-
tions are now very complicated, there.are not any reasons for any qualitative changé in the
solution of our problem (cf. [14], where the spin susceptibility in the acoustic limit with
two non-vanishing Landau parameters was obtained). In our paper we confine ourselves
only to the derivation of the gap equation'for the collective excitations J = 2, which can
be obtained for kv = 0.

Now, the kernels L, M, N, O have the form (cf. [21, 23])

2
L= 0=iF M= -F N=|—,-i)F, (13)
44 44

where

£ th(E2T) 44

F = J (_Ei_Az)ui AEZ — 2
4

H

we find the following gap equation: (cf. [13])
@*(1+2 b,F) = £ A42(1 +b,F). (14)

The modes with J = 2 are connected with the spin oscillations of D-wave symmetry, thus,
the frequency of these modes is modified by the Landau parameter b,.

6. Conclusions

In discussing Eq. (9) we can suspect that the system can be excited by means of the
monochromatic and polarized electromagnetic wave. This, of course, need not be right
since, in our predictions, we went beyond the accuracy of the applied theory. Eq. (14)
is very helpful to estimate the frequency of such mode. -

The authors would like to thank Professor J. Czerwonko for comments and helpful
discussions in reference to these topics.

APPENDIX A
Spherical tensors

In the case considered (angular momentum L = 1 and spin 5= 1) the spherical
tensors have the form (cf. [3, 7])

__ pkn kD .y
BJM__— Biuo piio’,
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where 0 <CJ <2, MI<J.

kn
Boo = —= 5km

1
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10_\/2 kyYnx kxYny/>

Blfnl = % (5ky5nz i 5kz5ny i iékzanx + iékxanz)’
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B,;nl = % ( . lakx(snz - 5k25nx + iékyanz + iakzény)n

kn
Byo =

(6kn . 35k25nz)’

B;"Z = % (5kxanx - 5ky5ny h iékxény - iaky(sn\x)a !
and
Big = (= DYB".
These quantities have the following properties

im p%kjn __
BJMBJM - 5ij5mns

im pkim
BiuBiw = 5]]’5MM',

B =B Bh =3,

Bl = —Blic By =0,

By = B3y; By =0.
APPENDIX B

Averaging formulae
(BY = by,
(Bp;> = byp;
<Bpip;> = § (bo—b3)d;;+b2pip;s
(BY P> = 4 (by—bs) (Bid s+ D0+ Didij)+ b3pib jDrs
(BPpipub> = (35 bo—3r ba+ 5 ba) (81j0kn+ 648 ju+ 8100 50

+ 3 (by—bs) (PiP jOsn+ DiDiSju+ Pib.d jot DiPibint PiBubu+ Pibndij) + bap:p ji’kf’n-

(A1)

(A2)
(A3)

(A4

(BD)
(B2)
(B3)

(B4)

(B3)
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