COUPLING COEFFICIENTS FOR CUBIC GROUPS. III. THE DOUBLE TETRAHEDRAL GROUP

By B. LULEK

Institute of Physics, A. Mickiewicz University, Poznań*

(Received March 12, 1978)

A method for the determination of Clebsch-Gordan coefficients in terms of spherical 3-j Wigner symbols is applied to the double tetrahedral group T'. A complete set of $3j\Gamma\gamma$ symbols, which allows one to determine the numerical value of any Clebsch-Gordan coefficient for this group, is proposed and appropriate permutation matrices are derived.

1. Introduction

In a previous paper Lulek [1] proposed a general algorithm for the determination of Clebsch-Gordan coefficients (CGC's) for any point group G in terms of CGC's for the group SU_2 . This method has been applied in a paper of Lulek et al. [2] (denoted as I) to the double octahedral group O'. Next, in the paper of Lulek and Lulek [3] (denoted as II), permutational properties of appropriate symmetric coupling coefficients (the so called $3\Gamma\gamma$ symbols) were discussed. The aim of the present paper is a similar discussion for the double tetrahedral group T', which essentially completes the case of cubic groups. A new feature characterising the group T' in comparison with O' is existence of complex representations which stimulates a careful distinguishing between Γ and Γ^* , and consequently between labels for a CGC ($\Gamma_1\Gamma_2\Gamma_3$) and for the corresponding $3j\Gamma\gamma$ or $3\Gamma\gamma$ symbol ($\Gamma_1\Gamma_2\Gamma_3^*$). In the following we use notation introduced in I and II.

2. Standard bases for irreducible representations and metric tensors

We use, according to Griffith [4], the following notation for irreducible representations of the group T': A, E1, E2, T, E', E'', E'''. The standard bases $|j\Gamma\gamma\rangle$ (cf. Eq. (1) of I) are defined by

$$|0Aa\rangle = |0,0\rangle,$$

 $|2E1e_1\rangle = \frac{1}{\sqrt{2}}|2,0\rangle + \frac{i}{2}(|2,-2\rangle + |2,2\rangle),$

^{*} Address: Instytut Fizyki, Uniwersytet A. Mickiewicza, Matejki 48/49, 60-769 Poznań, Poland.

$$|2E2e_{2}\rangle = \frac{1}{\sqrt{2}}|2,0\rangle - \frac{i}{2}(|2,-2\rangle + |2,2\rangle),$$

$$|1T-1\rangle = |1,-1\rangle, \quad |1T0\rangle = |1,0\rangle, \quad |1T1\rangle = |1,1\rangle,$$

$$|\frac{1}{2}E'\alpha'\rangle = |\frac{1}{2},\frac{1}{2}\rangle, \quad |\frac{1}{2}E'\beta'\rangle = |\frac{1}{2},-\frac{1}{2}\rangle,$$

$$|\frac{3}{2}E''\alpha''\rangle = -\frac{1}{\sqrt{2}}(i|\frac{3}{2},-\frac{3}{2}\rangle + |\frac{3}{2},\frac{1}{2}\rangle),$$

$$|\frac{3}{2}E''\beta''\rangle = \frac{1}{\sqrt{2}}(|\frac{3}{2},-\frac{1}{2}\rangle + i|\frac{3}{2},\frac{3}{2}\rangle),$$

$$|\frac{3}{2}E'''\alpha'''\rangle = \frac{1}{\sqrt{2}}(i|\frac{3}{2},-\frac{3}{2}\rangle - |\frac{3}{2},\frac{1}{2}\rangle),$$

$$|\frac{3}{2}E'''\beta'''\rangle = \frac{1}{\sqrt{2}}(i|\frac{3}{2},-\frac{3}{2}\rangle - |\frac{3}{2},\frac{1}{2}\rangle),$$

$$|\frac{3}{2}E'''\beta'''\rangle = \frac{1}{\sqrt{2}}(|\frac{3}{2},-\frac{1}{2}\rangle - i|\frac{3}{2},\frac{3}{2}\rangle).$$
(1)

TABLE I Metric tensors $[-1]^{\Gamma-\gamma}$ for the standard bases of irreducible representations of T'

	A E1 E2			T			E'		E''		E'''	
γ	а	e_1	e2	-1	0	1	a'	β΄	a''	β΄΄	a'''	β'' <mark>'</mark>
$-\gamma$	а	e_2	e_1	1	0	-1	β'	α'	β'''	a'''	β''	a''
$[-1]^{\Gamma-\gamma}$	1	1	1	1	-1	1	1	-1	1	-1	1	1

Components $[-1]^{\Gamma-\gamma}$ of the corresponding metric tensors together with the definitions of $-\gamma$ are given in Table I (cf. Eqs. (2) of I). Eq. (1) provides the decomposition coefficients $a_{\Gamma \nu \nu}^{jm}$ for the lowest value of j for which a given Γ appears. We can assume that for any j

$$a_{\Gamma v\gamma}^{jm} = \sum_{\gamma_0} a_{\Gamma_0 v_0 \gamma_0}^{jm} a_{\Gamma\gamma}^{\Gamma_0 \gamma_0}, \tag{2}$$

where the index 0 denotes the double octahedral group O', which is the intermediate subgroup in the chain $SU_2 \rightarrow O' \rightarrow T'$. In this case $v = (\Gamma_0, v_0)$, i.e. repetition indices of the first kind for T' are related to representations and appropriate repetition indices for the intermediate subgroup O'. The bases

$$|\Gamma_0 \Gamma \gamma\rangle = \sum_{\gamma_0} a_{\Gamma \gamma}^{\Gamma_0 \gamma_0} |\Gamma_0 \gamma_0\rangle \tag{3}$$

are given by

$$|A_1Aa\rangle = |A_1a_1\rangle,$$

 $|A_2Aa\rangle = |A_2a_2\rangle,$
 $|EE1e_1\rangle = \frac{1}{\sqrt{2}}(|E\theta\rangle + i|E\varepsilon\rangle),$

$$|EE2e_{2}\rangle = \frac{1}{\sqrt{2}}(|E\theta\rangle - i|E\epsilon\rangle),$$

$$|T_{i}T\gamma\rangle = |T_{i}\gamma\rangle, \quad i = 1, 2, \quad \gamma = 0, \pm 1,$$

$$|E'E'\alpha'\rangle = |E'\alpha'\rangle, \quad |E'E'\beta'\rangle = |E'\beta'\rangle,$$

$$|E''E'\alpha'\rangle = |E''\alpha''\rangle, \quad |E''E'\beta'\rangle = |E''\beta''\rangle,$$

$$|U'E''\alpha''\rangle = -\frac{1}{\sqrt{2}}(|U'\lambda\rangle + i|U'\nu\rangle),$$

$$|U'E'''\beta''\rangle = \frac{1}{\sqrt{2}}(i|U'\kappa\rangle + |U'\mu\rangle),$$

$$|U'E'''\alpha'''\rangle = -\frac{1}{\sqrt{2}}(|U'\lambda\rangle - i|U'\nu\rangle),$$

$$|U'E'''\beta'''\rangle = \frac{1}{\sqrt{2}}(-i|U'\kappa\rangle + |U'\mu\rangle).$$

$$(4)$$

Eqs (2)—(4) allow one to determine the decomposition coefficients $a_{\Gamma v\gamma}^{jm}$ for the chain $SU_2 \to T'$ in terms of known coefficients $a_{\Gamma ovo\gamma o}^{jm}$ for $SU_2 \to O'$ (Griffith [4]). E.g. the basis $|2T\gamma\rangle$, which is necessary for the determination of CGC's for the triad TTT by the method proposed in [1], is given by

$$|2T-1\rangle = -|2,1\rangle, \quad |2T0\rangle = \frac{1}{\sqrt{2}}(-|2,-2\rangle + |2,2\rangle), \quad |2T1\rangle = |2,-1\rangle.$$
 (5)

TABLE II Decomposition coefficients $a_{\Gamma\nu\gamma}^{jm}$ for the chain $SU_2 \to O' \to T'$ for j=3

j=3	A		$T_{v=T_1}$			$T_{v=T_2}$	36.
m	a	-1	0	1	-1	0	1
-3 -2 -1	$-1/\sqrt{2}$	$-\sqrt{3}/2\sqrt{2}$		$-\sqrt{5}/2\sqrt{2}$	$-\sqrt{3}/2\sqrt{2}$	$1/\sqrt{2}$	$\sqrt{5}/2\sqrt{2}$
0 1 2 3	$1/\sqrt{2}$	$-\sqrt{5}/2\sqrt{2}$	1	$-\sqrt{3}/2\sqrt{2}$	$\sqrt{5}/2\sqrt{2}$	$1/\sqrt{2}$	$-\sqrt{3}/2\sqrt{3}$

Complete sets of decomposition coefficients for j=3 and 5/2 are given in Table II and III, respectively. These Tables are useful for numerical checking of the orthogonality properties of $3j\Gamma\gamma$ symbols for the group T'. Together with Eqs. (1) and (5) they provide a complete set for the reduction related to the chain $SU_2 \rightarrow O' \rightarrow T'$.

TABLE III Decomposition coefficients $a_{\Gamma_2}^{jm}$ for the chain $SU_2 \rightarrow O' \rightarrow T'$ for j=5/2

j = 5/2		E	Ε"			E'''		
m	α΄	β'	a''	β'' =	a'''	β…		
-5/2	Z +	$1/\sqrt{2\cdot 3}$		$-i\sqrt{5}/2\sqrt{3}$		$i\sqrt{5}/2\sqrt{3}$		
-3/2	$-\sqrt{5}/\sqrt{2\cdot 3}$		$-i/2\sqrt{3}$		$=i/2\sqrt{3}$			
-1/2				$-1/\sqrt{2}$		$-1\sqrt{2}$		
1/2	1		$1/\sqrt{2}$	- 2	$-1/\sqrt{2}$			
_ 3/2		$-\sqrt{5}/\sqrt{2\cdot 3}$		$-i/2\sqrt{3}$		$i/2\sqrt{3}$		
5/2	$1/\sqrt{2\cdot 3}$		$-i\sqrt{5}/2\sqrt{3}$		$i\sqrt{5}/2\sqrt{3}$			

3. 3jΓγ symbols and Clebsch-Gordan coefficients

The $3j\Gamma\gamma$ symbols, defined by the formula

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ \Gamma_1 v_1 & \Gamma_2 v_2 & \Gamma_3 v_3 \end{pmatrix} = \sum_{m_1, m_2, m_3} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} (a_{\Gamma_1 v_1 \gamma_1}^{j_1 m_1} a_{\Gamma_2 v_2 \gamma_2}^{j_2 m_2} a_{\Gamma_3 v_3 \gamma_3}^{j_3 m_3})^*, \tag{6}$$

possess, by the definition, the following properties under a permutation $\sigma(B|A)$ of their columns:

$$\begin{pmatrix}
j_b & j_{b'} & j_{b''} \\
\Gamma_b v_b & \Gamma_{b'} v_{b'} & \Gamma_{b''} v_{b''} \\
\gamma_b & \gamma_{b'} & \gamma_{b''}
\end{pmatrix} = (-1)^{f(\sigma(B/A), j_1, j_2, j_3)} \begin{pmatrix}
j_a & j_{a'} & j_{a''} \\
\Gamma_a v_a & \Gamma_{a'} v_{a'} & \Gamma_{a''} v_{a''} \\
\gamma_a & \gamma_{a'} & \gamma_{a''}
\end{pmatrix}, (7)$$

where

$$f(\sigma(B|A), j_1, j_2, j_3) = \begin{cases} j_1 + j_2 + j_3 & \text{when } \sigma \text{ is an odd permutation} \\ 0 & \text{otherwise,} \end{cases}$$
 (8)

and under time reversal:

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ \Gamma_1 v_1 & \Gamma_2 v_2 & \Gamma_3 v_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix} = \begin{bmatrix} -1 \end{bmatrix}^{\Gamma_1 - \gamma_1 + \Gamma_2 - \gamma_2 + \Gamma_3 - \gamma_3} \begin{pmatrix} j_1 & j_2 & j_3 \\ \Gamma_1^* v_1 & \Gamma_2^* v_2 & \Gamma_3^* v_3 \\ -\gamma_1 & -\gamma_2 & -\gamma_3 \end{pmatrix}^*. \tag{9}$$

A complete set of $3j\Gamma\gamma$ symbols, which are required for the determination of CGC's by the method of [1], is given in Table IV. Each triad $\Gamma_1\Gamma_2\Gamma_3 \neq TTT$ is related to a single set of $(j_1j_2j_3)$ corresponding to the smallest value of j for which $n(j, \Gamma) = 0$, and the triad TTT is associated with two such sets: (1 1 1) and (1 1 2).

TABLE IV

 $3j\Gamma\gamma$ symbols for the group T'. The Table contains all independent non-zero symbols for the arguments arranged according to the following criterions: $(i)\Gamma_1 \leqslant \Gamma_2 \leqslant \Gamma_3$, where the relation \leqslant is defined by the sequence $A \leqslant E1 \leqslant E2 \leqslant T \leqslant E' \leqslant E'' \leqslant E'''$; (ii) within a fixed triad $\Gamma_1\Gamma_2\Gamma_3$ the symbols are ordered according to increasing j_3 ; (iii) for a fixed $\Gamma_1\Gamma_2\Gamma_3j_3$ symbols are ordered first according to increasing γ_1 , and then (under fixed γ_1) — according to increasing γ_2 , γ_i being ordered according to the sequence given in Table I; (iv) if $(j_i\Gamma_i) = (j_{i+1}\Gamma_{i+1})$, then $\gamma_i \leqslant \gamma_{i+1}$. All other non vanishing symbols can be easily obtained from Eqs (7)—(9)

Γ_1	Γ_2	Γ_3	j_1	j_2	j_3	71	γ2	γ3.	$3j\Gamma\gamma$
A	A	* A	0	0	0	a	а	a	1
A	<i>E</i> 1	E2	0	2	2	a	e_1	e_2	$1/\sqrt{5}$
A	T	T	0	1	1	a	-1	1	$1/\sqrt{3}$
				· ·			0	0	$-1/\sqrt{3}$
A	E'	E'	0	1/2	1/2	a	a'	β′	$1/\sqrt{2}$
A	E''	E'''	0	3/2	3/2	а	α''	β'''	1/2
							β΄΄	,a'''	-1/2
E1	E1	E1	2	2	2	e_1	e_1	e ₁	$-2/\sqrt{5\cdot7}$
E1	T	T	2	1	1	e_1	-1	-1	$-i/2\sqrt{5}$
	24							1	$1/2\sqrt{3\cdot 5}$
							0	0	$1/\sqrt{3\cdot 5}$
E1	E'	E'''	2	1/2	3/2	e_1	a'-	β'''	$-1/\sqrt{2\cdot 5}$
							β΄	a'''	$1/\sqrt{2\cdot 5}$
E1 ·	E''	E''	2	3/2	3/2	e_1	a''	β''	$-1/\sqrt{2\cdot 5}$
T	T	T1	1	1	1	-1	0	1	$1/\sqrt{2\cdot 3}$
T	T	T2	1	1	2	-1	-1	0	$1/\sqrt{2\cdot 5}$
Table T						1.	0	-1	$1/\sqrt{2\cdot 5}$
T	E'	E'	1	1/2	1/2	-1	a'	a'	$-1/\sqrt{3}$
		-				0 .	a'	β΄	$1/\sqrt{2\cdot 3}$
T	E'	E''	1	1/2	3/2	1	a'	a''	$-1/2\sqrt{2\cdot 3}$
							β΄	β''	$i/2\sqrt{2}$
				10.1		0	a'	β''	$-1/2\sqrt{3}$
						-	β΄	α''	$-1/2\sqrt{3}$
						1	a'	a''	$i/2\sqrt{2}$
777	T '	P7444	-	-			β΄	β''	$-1/2\sqrt{2\cdot 3}$
T	E'	E'''	1	1/2	3/2	-1	α'	a'''	$-1/2\sqrt{2\cdot 3}$
							β΄	β'''	$-i/2\sqrt{2}$
						0	a'	β'''	$-1/2\sqrt{3}$
							β΄	a'''	$-1/2\sqrt{3}$
	4					1	α'	a'''	$-i/2\sqrt{2}$
T	E''	E''	4	2/0	2/2		β΄	β'''	$-1/2\sqrt{2\cdot 3}$
-	E	E	1	3/2	3/2	-1	- a''	a''	$1/\sqrt{2\cdot 3\cdot 5}$
1	1						β''	β''	$i/\sqrt{2\cdot 5}$

Γ_1	Γ_2	Γ_3	j_1	j ₂	<i>j</i> ₃	γ1	γ ₂	γ ₃	$3j\Gamma\gamma$
A	A	A	0	0	0	a	a	a	1_:
						0	a'''	β''	$1/\sqrt{3\cdot 5}$
						1	α''	a''	$i/\sqrt{2\cdot 5}$
T	E''	E'''	1	3/2	3/2	-1	$\beta^{\prime\prime}$ $\alpha^{\prime\prime}$	$\beta^{\prime\prime}$ $a^{\prime\prime\prime}$	$\frac{1/\sqrt{2\cdot 3\cdot 5}}{1/\sqrt{2\cdot 3\cdot 5}}$
1	E	L		3/2	3/2	0	a''	β'''	$-1/2\sqrt{3\cdot 5}$
							β''	a'''	$-1/2\sqrt{3\cdot 5}$
	×					1	β''	β'''	$1/\sqrt{2\cdot 3\cdot 5}$

TABLE V The coefficients $a(\Gamma_1\Gamma_2\Gamma_3)$ for the group T' for $c(\Gamma_1\Gamma_2\Gamma_3)=1$

Γ_1	Γ_2	Γ_3	$a(\Gamma_1\Gamma_2\Gamma_3)$	Γ_1	Γ_2	Γ_3	$a(\Gamma_1\Gamma_2\Gamma_3)$
A	A	A	1	T	E'	E'	$\sqrt{2}$
	E1	<i>E</i> 1	$\sqrt{5}$			E''	2
	E2	E2	$\sqrt{5}$			E'''	2
	T	T	$\sqrt{3}$		$E^{\prime\prime}$	E'	2
	E'	E'	$\sqrt{2}$			$E^{\prime\prime}$	$2\sqrt{5}$
	E''	$E^{\prime\prime}$	2			E'''.	$\sqrt{5}$
	E	\boldsymbol{E}	2		E'''	E'	2
E1	<i>E</i> 1	E2	$\sqrt{5\cdot 7/2}$			$E^{\prime\prime}$	$\sqrt{5}$
	E2	A	$\sqrt{5}$			$E^{\prime\prime\prime}$	$2\sqrt{5}$
	T	T	$\sqrt{3\cdot 5}$	E'	E'	A	1
	E'	E''	$\sqrt{2\cdot 5}$			T	$\sqrt{3}$
	E''	$E^{\prime\prime\prime}$	$\sqrt{2\cdot 5}$		E''	E 1	$\sqrt{5}$
	E'''	E'	$\sqrt{2\cdot 5}$			T	$\sqrt{2\cdot 3}$
E2	E2	E1	$\sqrt{5\cdot 7/2}$		E'''	E2	$\sqrt{5}$
	T	T	$\sqrt{3\cdot 5}$			T	$\sqrt{2\cdot 3}$
	E'	E'''	$\sqrt{2\cdot 5}$	E''	- E''	E2	$\sqrt{5}$
	E''	E'	$\sqrt{2\cdot 5}$			T	$\sqrt{3\cdot 5}/\sqrt{3\cdot 5}$
	E'''	$E^{\prime\prime}$	$\sqrt{2\cdot 5}$		* E'''	A	$\sqrt{2}$
T	T	A	1			T	$\sqrt{2\cdot 3}$
		E1	$\sqrt{5}$	E'''	$E^{\prime\prime}$	<i>E</i> 1	$\sqrt{5}$
		E2	$\sqrt{5}$			T	$\sqrt{3\cdot 5}/\sqrt{3\cdot 5}$

CGC's are given by the formula

$$\begin{bmatrix} \Gamma_{1} & \Gamma_{2} & \Gamma_{3} & w \\ \gamma_{1} & \gamma_{2} & \gamma_{3} \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix}^{\Gamma_{3} - \gamma_{3}} \sum_{j_{3}} \alpha_{wj_{3}} (\Gamma_{1}\Gamma_{2}\Gamma_{3}) \begin{pmatrix} j_{1} & j_{2} & j_{3} \\ \Gamma_{1} & \Gamma_{2} & \Gamma_{3}^{*} \\ \gamma_{1} & \gamma_{2} & -\gamma_{3} \end{pmatrix}, \tag{10}$$

where the sum runs over $c(\Gamma_1\Gamma_2\Gamma_3)$ smallest values of those j_3 's which enclose Γ_3 . Assuming, according to I, the convention of nonnegative reduction coefficients, we obtain for $c(\Gamma_1\Gamma_2\Gamma_3)=1$ that

$$\alpha(\Gamma_1 \Gamma_2 \Gamma_3) = \alpha(\Gamma_2 \Gamma_1 \Gamma_3) = \left[\frac{2j_3 + 1}{N(j_1 \Gamma_1, j_2 \Gamma_2, j_3 \Gamma_3)}\right]^{1/2} \quad \text{for} \quad \Gamma_1 \Gamma_2 \Gamma_3 \neq TTT.$$
 (11)

A complete set of coefficients $\alpha(\Gamma_1\Gamma_2\Gamma_3)$ for this case is given in Table V.

In order to derive CGC's for TTT we must first assume the reduction coefficients $[1T, 1T, w|j_3T]$. They can form an arbitrary two-dimensional unitary matrix, since c(TTT) = 2. The simplest permutation properties are associated with the choice

$$[1T, 1T, w|j_3T] = \delta_{w,j_3}$$
 (12)

(cf. the next Section). According to the terminology introduced in II, this choice defines a symmetrised system of repetition indices. The matrix $\{\alpha_{wj,3}(TTT)\}$ for this system is given by Table VI.

TABLE VI
The matrix $\alpha(TTT)$ for the symmetrised system of repetition indices

	*	
TTT	$j_3 = 1$	$j_3=2$
w = a $w = s$	$\sqrt{3}$	$\frac{0}{\sqrt{5}}$

The Tables I, IV—VI and Eq. (10) provide numerical determination of any CGC for the group T' (cf. appropriate remarks in I, Section 4).

4. The permutation symmetry of CGC's for the group T'

According to paper II, properties of CGC's with respect to a permutation of their columns are fully determined by permutation matrices $m(\sigma, \Gamma_a \Gamma_{a'} \Gamma_{a''})$, whose elements are given by

$$m_{xw}(\sigma(B/A), \Gamma_a \Gamma_{a'} \Gamma_{a''}) = \sum_{\gamma_1 \gamma_2 \gamma_3} \begin{pmatrix} \Gamma_b & \Gamma_{b'} & \Gamma_{b''} \\ \gamma_b & \gamma_{b'} & \gamma_{b''} \end{pmatrix}_x \begin{pmatrix} \Gamma_a & \Gamma_{a'} & \Gamma_{a''} \\ \gamma_a & \gamma_{a'} & \gamma_{a''} \end{pmatrix}_w^*, \tag{13}$$

where the two-row symbols in parentheses are $3\Gamma\gamma$ symbols, related to CGC's by the formula

$$\begin{bmatrix} \Gamma_1 & \Gamma_2 & \Gamma_3 & w \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix}^{\Gamma_3 - \gamma_3} \begin{bmatrix} \Gamma_3 \end{bmatrix}^{1/2} \begin{pmatrix} \Gamma_1 & \Gamma_2 & \Gamma_3^* \\ \gamma_1 & \gamma_2 & -\gamma_3 \end{pmatrix}_w^*. \tag{14}$$

For all the cases, except of the triad TTT, the permutation matrices are one-dimensional. Using Eqs (10) and (11) we obtain from Eq. (13) that

$$m(\sigma, \Gamma_1 \Gamma_2 \Gamma_3) = \begin{cases} (-1)^{j_1 + j_2 + j_3} & \text{for } \sigma - \text{ an odd permutation} \\ +1 & \text{otherwise.} \end{cases}$$
 (15)

It follows from Eq. (12) that

$$\alpha_{wi_3}(TTT) = (2j_3 + 1)^{1/2} \delta_{wi_3},\tag{16}$$

implying that

$$m_{xw}(\sigma, TTT) = \delta_{xw} \begin{cases} (-1)^x \text{ for } \sigma - \text{an odd permutation} \\ 1 \text{ otherwise.} \end{cases}$$
 (17)

The choice (12) corresponds therefore to a symmetrised system of repetition indices, $x = j_3 = 1$ and $x = j_3 = 2$ being related to the antisymmetric and symmetric cube of the representation T.

5. Final remarks and conclusions

We proposed in this paper a complete set of coupling coefficients for the double tetrahedral group T'. It follows that the permutation symmetry of these coefficients can be fully determined by the corresponding symmetry of $3j\Gamma\gamma$ symbols for the group SU_2 .

We also proposed in Section 2 a relation between repetition indices of the first kind (v-type) for $SU_2 \to T'$ and appropriate repetition indices and irreducible representations of the intermediate subgroup O'. In particular, it is easy to see that the repetition indices of the second kind w-type for the triad TTT are related to the repetition indices of the first kind, associated with the reduction of the resulting representation $D^{(j_3)}$ via the group O': $j_3vT = 1T_1T$ and $2T_2T$ for w = a and s, respectively.

The author wishes to thank Professor Di. habil. L. Kowalewski and Doc. Dr. habil. T. Lulek for their helpful discussions and remarks.

REFERENCES

- [1] T. Lulek, Acta Phys. Pol. A48, 501 (1975).
- [2] B. Lulek, T. Lulek, B. Szczepaniak, Acta Phys. Pol. A54, 545 (1978).
- [3] B. Lulek, T. Lulek, Acta Phys. Pol. A54, 561 (1978).
- [4] J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge 1964,