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COUPLING COEFFICIENTS FOR CUBIC GROUPS.
III. THE DOUBLE TETRAHEDRAL GROUP

By B. LuLEk
Institute of Physics, A. Mickiewicz University, Poznan*
( Received March 12, 1978)

A method for the determination of Clebsch-Gordan coefficients in terms of spherical
3—j Wigner symbols is applied to the double tetrahedral group T’. A complete set of 3jIy
symbols, which allows one to determine the numerical value of any: Clebsch-Gordan
coefficient for this group, is proposed and appropriate permutation matrices are derived.

1. Introduction

In a previous paper Lulek [1] proposed a general algorithm for the determination
of Clebsch-Gordan coefficients (CGC’s) for any point group G in terms of CGC’s for the
group SU,. This method has been applied in a.paper of Lulek et al. [2] (denoted as I)
to the double octahedral group O'. Next, in the paper of Lulek and Lulek {3] (denoted as 1I),
permutational properties of appropriate symmetric coupling coefficients (the so called
3I'y symbols) were discussed. The aim of the present paper is a similar discussion for the
double tetrahedral group T’, which essentially completes the case of cubic groups. A new
feature characterising the group T’ in comparison with O’ is existence of complex represen-
tations which stimulates a careful distinguishing between I' and I'*, and consequently
between labels for a CGC (I',I',I'5) and for the corresponding 3jIy or 3I'y symbol (I',[",T'3).
In the following we use notation introduced in I and II.

2. Standard bases for irreducible representations and metric tensors

We use, according to Griffith {4], the following notation for irreducible representa-
tions of the group T': 4, E1, E2, T, E', E”, E'". The standard bases |jI'y) (cf. Eq. (1) of I)
are defined by

[04a = [0, 0),

1 i
[2Eleyy = 75 12,05+ 5 (12, —2>+12,2»),
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" 2E2e, = — 2, 05— '<2, _254+12,2)),

\/_
NT—1> = 1, =1>, J1TO> = {1,095, [IT1> = [1, i),
‘% E,OC,> =S |—21" H %>, |% E’ﬁ,> = [% s _%>9

I3 E'd"y = \/5 @53 —3>+13, )

1
2 E'B> = 7 (3, = +ilz, ),

\/
1
I% E”,OC/”> — _\/—Q (l{% 0 ‘—%>"' ]% 5 %>),
IS E"B"> = \/z(lz » ——il3. D) 1
TABLE |
Metric tensors [ 117~7 for the standard bases of irreducible representations of T~
_—— — = . — e -
A | El ’ E2 T ’ E’ E” E"
— |. 7
y a e e -1 0 ! o 5/ o ﬂ/; } o i ‘an
—y a e ey 0 _ ﬁr a’ /3”/ o’’’ /3// , a’’
[~1} 7 |1 1 1 1 ——1“1 ] -1 1 —1 * r | ~1

Components [—1]""7 of the corresponding metric tensors together with the definitions
of —y are given in Table I (cf. Egs. (2) of I). Eq. (1) provides the decomposition coefficients
ar,,y for the lowest value of j for which a given I' appears. We can assume that for any j

T
a}"vv Z arovo}’oargm’ (2)

where the index O denotes the double octahedral group O', which is the intermediate
subgroup in the chain SU, — O’ — T'. In ihis case v = (I'y, 1g), i.e. repetition indices
of the first kind for T’ are related to representations and appropriate repetition indices
for the intermediate subgroup O’. The bases
oIy = Z arm” Vo) v ) 3
Yo
are given by

|A;da) = |4 a,>,
|AAa) = {Aza5),

|EEle,» = —= (I[EO) +i|Ee)),,

\/_
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RY
J2
\'T.Tyy = |Ty), i=12 v=0, %1,
|[E'E'a’y = |E'a'>, |E'Ef) =I|EBD,
|[E'E'a’y = |[E"a'"), |E"E'B") = |E"B"),
1

|EE2e,) = —= (|[EO) —i|E¢)),

[UE"d"y = — \/E(IU’/I>+i|U'v)),
1
\U'E"B"> = ﬁ(ilU'@HU’u)),
e 1t I __1_ ! —_ st 7
1
UE"B"y = —= (—ilU'&>+|U')). @

Eqs (2)—(4) allow one to determine the decomposition coefficients a{'{,’7 for the chain
SU, - T’ in terms of known coefficients alt oo for SU, — O (Griffith [4]). E.g. the basis
|2T>, which is necessary for the determination of CGC’s for the triad TTT by the method
proposed in [1], is given by

1
RT-1) = —12,1), [2T0) = \—/3(—!2, —25+12,2)), 2T1) =2, =1>. (5
TABLE 11
Decomposition coefficients a’}’-’,‘,y for the chain SU, - O’ - T’ for j =3
\\'».‘ f= 3 A Tv=T1 Tv=T2
k\. PR ————— - e - e
m N a —1 0 1 —1 0 1
~3 e -~ /5/2\/§| —\/5/2\/5‘
—2 —1/4/2 | 1/\/5 |
-1 —/312¢/2 /5/2/2
0 1
1 —4/3124/2| /51202
2 14/2 - 14/2
3 | —\/5/2\/§| . . —\/5/2\/5

Complete sets of decomposition coefficients for j = 3 and 5/2-are given in Table IT and
III, respectively. These Tables are useful for numerical checking of the orthogonality
properties of 3jI'y symbols for the group T’. Together with Egs. (1) and (5) they provide
a complete set for the reduction related to the chain SU, - O — T
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TABLE 1II
Decomposition coefficients a’,.—”; for the chain SU, - O’ — T’ for j = 5/2
N j=52 | E ! E” E
. e — = -
m N\ o g e O B
ANy R o
—52 1V2-3 —i\/5124/3 in/5/24/3
-3/2 V5723 | —i2¢/3 i124/3
—1/2 i [ =12 —14/2
1/2 12 | —14/2
32 V517243 —i24/3 if24/3
52 | 123 ~iv/3/20/3 ! iv/3124/3

3. 3jI'y symbols and Clebsch-Gordan coefficients
The 3jI'y symbols, defined by the formula
j 1A .} 2 J 3

W« . Ji J2 U3 _

‘_'F 101 Fz.Uz— Iso3 | = i (a}“j:gllyla{}z’:;y;_a;i’g:y;;)*’ (6)
SR ) N Mizmy i 2 g

(e SR V3 £l o

possess, by the definition, the following properties under a permutatmn 6(B/A) of their

columns:

jh ‘ih' jb" ja ja' ju”

Fbvb Fb'vb’ rb”vb” il (—1)f(a(B/A)!j1’j2,j3) Fava ra‘va' Fa”Ua" b [—”
o Ve Ve Yo Ve Yar
where
N i i+ _ JJitj2+js when ¢ is an odd permutation 8
J(o(B[A), j1, 2, J3) = {0 otherwise, (®)
and under time reversal:
jl j2 j3 jl j2 j3 ot
Ty Ty, Fyog| = [=1]ntlenshosl om0y il 9)
V1 V2 73 —%1 —%2 —73

A complete set of 3jI"y symbols, which are required for the determination of CGC’s by
the method of [1], is given in Table IV. Each triad I';I',I's # TTT is related to a single
set of (j1j2js) corresponding to the smallest value of j for which n(j, I') = 0, and the triad
TTT is associated with two such sets: (111) and (1 1 2). '
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TABLE IV

3jfy symbols for the group T’. The Table contains all independent non-zero symbols for the arguments
arranged according to the following ‘criterions: (i)I"y < I, < I's, where the relation < is defined by the
sequence A < Fl < E2 < T< E! < E”’ < E’; (ii) within a fixed triad 1" I I"; the symbols are ordered
according to increasing js; (iii) for a fixed I';1,1;j; symbols are ordered first according to increasing 7,
and then (under fixed y,) — according to increasing ¥, ¥; being ordered according to the sequence given
inTable I; () if (7;I}) = (ji+1d511), theny; < vi.y. All other non vanishing symbols can be easily obtained

from Eqs (7)—(9)

I I, Iy J1 J2 J3 Y1 V2 VE) 3iFy
A A A 0 0 0 a a a 1
A El E2 0 2 2 a ey | e 14/3
A T T 0 1 ~1 1 1/4/3
|0 0 —11/3
A E E 0 1/2 1/2 i B 1/4/2
4 E” E" 0 32 32 a’ g 12
B’ a’ ~1/2
El E1 E1 2 2 2 e e es -5 7
El T T | 2 1 1 e | —1 -1 ~i[24/5"
1 12V3-5
0 0 V35
El E’ Jeit 2 12 3/2 e o B —1V2-5
B a’’ 1/\/5-'—5
El E” E” 2 32 32 e @’ g | —-12s
T T il 1 1 1 —1 0 1 V23
T T T2 1 1 2 ~1 -1 0 1V2s
0 o] V25
T E' E' 1 12 12 | -1 o ¢ |  ~1/3
0 a’ B 1/\/2—3
T E' E" 1 1/2 32 | -1 o o —1/2v2-3
i B if24/2
0 o 8 ~1/24/3
g a —1/24/3
1 o« a’ i24/2
. [ —1/2v273
T E E" 1 12 32 -1 @ o« | =12V/2-3
il B ‘ —i[24/2
0 « | B ~112¢/3
g ~1/24/3
1 o a”’ —i/24/2
B (7 —12V2 3
T Er | B N (Y S (Y, S (Y L V235
| poloe | s
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TABLE 1V (continued)

I, I, I ‘ J1 | J2 J3 Y1 V2 V3 3y
A A A 1 0 0 0 a a a 1-
| \ |
| ‘ 0 @’ B’ 1V3-5
. 1 o’ o iv2-s
' B B 1V2-3-5
T E” E" 1 3/2 32 | -1 o’ @’ V235
0 a B —1/2V3 -5
B o’ —1/2V3 -5
1o B V235
TABLE V
The coefficients a(I",. 1, I'5) for the group T’ for (I J2I%) = 1
I, I Iy G(Fipzps) I } I, I a(I' I3 15)
|
A A 4 | i T ‘ E E’ 42
El El | 4/5 | E” 2
E2 E2 43 ; E” 2
T ‘ T | 43 E” E’ 2
E E V2 E” 24/5
E” E” 2 E" V3
E E 2 E" E’ 2
El El E2 V572 E" \/3
R 4 /3 T 2/3
T 7 V35 E’ E A 1
E’ E" V25 T V3
E” E" V2.5 E" E1l V35
E" E' V2.5 , T V23
E2 E2 E1l \/5-7)2 | E* E2 V3
T Gy V35 T V23
E E” V25 E” i E2 V3
E” E’ V25 T V3512
E" E” V25 E" A A2
T (g A il T V235
E1l V] | &~ E” El oV
B2 /3 ‘ T V352
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CGC(’s are given by the formula

; S0 J
r, I, I's w o Z G
[ :' = [_1] St w13(1-' F2F3) r 1 F2 Fﬁ 5 (10)
Y1 Y2 Vs -
71 Y2 V3

where the sum runs over c¢(I",I",I";) smallest values of those j;’s which enclose I';. Assuming,
according to I, the convention of nonnegative reduction coefficients, we obtain for

C(F1F2F3) = 1 that

2js+1 142 i
= for I',I[,I'3%# TTT. (11)

a(l'(I5I'5) = a(I, I I3) = [N(JF—]F j_F
14 12J2% 2:J3% 3

A complete set of coefficients a(I'I'»I';) for this case is given in Table V.

In order to derive CGC’s for TTT we must first assume the reduction coefficients
[IT, 1T, w|j3T]. They can form an arbitrary two-dimensional unitary matrix, since
o(TTT) = 2. The simplest permutation properties are associated w:th the choice

[LT, 1T, wljsT] = b, (12

(cf. the next Section). According to the terminology introduced in II, this choice defines
a symmetrised system of repetition indices. The matrix {ocw“(T TT)} for this system is
given by Table VL

TABLE VI
The matrix a(TTT) for the symme’msed system of repetition indices
TTT ja=1 Ja=2
w=a 23 0
w=s 0 V5

The Tables I, IV—VI and Eq. (10) provide numerical determination of any CGC
for the group T’ (cf. appropriate remarks in I, Section 4).

4. The permutation symmetry of CGC’s for the group T’

Accoding to paper II, properties of CGC’s with respect to a permutation of their
columns are fully determined by permutation matrices m(o, I',;I',I,), whose elements
are given by

AY

. ES
i1, (0(BJ ), [LaT) = Z (F » Iy T ) (F s Tu T ) 13)
'yb yb' yb” x ya 'ya’ ya” w

17273
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where the two-row symbols in parentheses are 3I'y symbols, related to CGC’s by the

formula
ry r, r, W] e 1/2<F1 I, F§>*
=[~-1]""T ‘ . 14
[h Y2 Vs [=177E] Y2 —¥s )w (14

For all the cases, except of the triad 777, the permutation matrices are one-dimensional.
Using Egs (_10) and (11) we obtain from Eq. (13) that

_ f(=1)t™2* for ¢ — an odd permutation .
mio, I1ITs) = {+1 otherwise. (15)
It follows from Eq. (12) that
%, (TTT) = (2j3+1)"%5,,;,, (16)
implying that
i | (=1 for ¢ — an odd permutation
Mn(@ TTT) = 0s, {1 otherwise. (7

The choice (12) corresponds therefore to a symmetrised system of repetition indices,
x=j3=1and x = j; = 2 being related to the antisymmetric and symmetric cube of
the representation 7.

3. Final remarks and conclusions

We proposed in this paper a complete set of coupling coefficients for the double
tetrahedral group T’. It follows that the permutation symmetry of these coefficients can
"be fully determined by the ‘corresponding symmetry of '3,/'1’ 7 symbols for the group SU,.

We also proposed in Section 2 a relatfon between repetition indices of the first kind
(v-type) for SU, — T’ and appropriate repetition indices and irreducible representations
of the intermediate subgroup-O’. In particular, it is easy to see that the repetition indices
of the second kind w-type for the triad TTT are related to the repetition indices of the
first kind, associated with the reduction of the resulting representation DY via
the group O': j;wT = 17T and 2T,T for w = a and s, respectively.

The author wishes to thank Professor Di1. habil. L. Kowalewski and Doc. Dr. habil.
T. Lulek for their helpful discussions and remarks.
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