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The tunneling characteristics of differential resistivity have been calculated for
a Pb-Al,O;-HgSe junction. Calculations have been performed using two methods: WKB
approximation and matching of wave functions. It has been shown that only the method of
matching of wave functions, in which the peculiar band structure of the HgSe electrode
was taken into account, allows one to explain the experimentally observed asymmetry
of tunneling characteristics.

The electron tunneling in a metal-insulator-semiconductor junction in which HgSe
crystals were used as semiconductor electrodes has been studied recently [1, 2]. The
structures observed in the first and second derivative of tunneling characteristics have
been interpreted as due to the HgSe-phonon assisted tunneling [1]. In the external magnetic
field the oscillatory structures due to the Landau quantization of the HgSe conduction
band have been observed [2].

The purpose of the present work is to explain the general shape of the differential
resistivity characteristic of the Pb-Al,0;-HgSe tunnel junction. Fig. 1 (solid line) shows
a typical experimental characteristic of the differential resistivity versus voltage of the
tunnel junction based on HgSe crystal measured at 4.2 K. The characteristic is nearlx
parabolic in shape with a rather large asymmetry about V' = 0. The fine structure near
zero bias reflects the superconducting energy gap of the lead electrode. The maximum
of the curve appears at the polarization corresponding to the tunneling from the metal
to the conduction band of the semiconductor electrode. _

Similar observations have been made by Hauser and Testardi [3] for metal-insulator-
-metal junctions and by Hagiwara and Tanaka [4] for metal-insulator-HgTe junctions.’
For metal-insulator-metal junctions the common interpretation of the observed asymmetry:
of tunnel characteristics relates it with the potential barrier asymmetry [5]. Hagiwara and
Tanaka have explained this asymmetry as due to band bending at the surface of a HgTe
electrode. They have concluded that the position of the maximum of the characteristic
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is determinated by the magnitude of the potential at the HgTe surface. Their junctions
were made on pure HgTe crystals so that the value of the potential, equal to about 50 meV,
was quite reasonable. Our junctions were made on HgSe crystals with electron concentra-
tions ranging from 1 x 10'7 cm2 to 2.3 % 108 cm~3 corresponding to Fermi energies from
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Fig. 1. Tunneling characteristics of a Pb-Al,0;-HgSe (= 1%107 ‘ em™3) junction calculated for the
rectangular barrier model: in WKB approximation (dashed line) and by matching (dashed-dotted line).
The experimental characteristic is shown by the solid line

40 to 150 meV measured from the bottom of the conduction band. According to the
interpretation proposed by Hagiwara and Tanaka we should assume the surface
potential to be larger than 100 meV. There are two reasons for which such an assumption
seems to be unrealistic: first, electrons in the HgSe conduction band screen the surface
electric field and hence cause a lowering of the surface potential barrier; and second,
the tunneling characteristics measured in the external magnetic field show no structures
due to the surface Landau levels.

Therefore we have tried to explain the asymmetry of the characteristic of our junction
using standard methods [5] of calculating the tunneling current. The peculiar band structure
of the HgSe electrode was taken into account and flat band conditions were assumed.
In the first attempt we have calculated the differential resistivity using the semiclassical
WKB approximation [6, 7] for a trapezoidal potential barrier. Such a model of a barrier
is commonly used for explaining the asymmetry of the tunnel characteristic for metal-
-insulator-metal junctions [6]. Fig. 2 shows an idealized model of a tunnel junction with
a trapezoidal potential barrier. The Fermi energies of the metal and semiconductor electrode
are denoted by Ep; and Epg, respectively. The trapezoidal potential barrier heights
@, and @, correspond to the work functions of the electrodes lowered by the conduction
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band edge of the insulator. The energy is measured from the bottom of the conduction
band of the metal electrode.

To illustrate the results, the calculated differential resistivity as a function of voltage
is presented by the dashed curve in Fig. 1 for a rec;tangular barrier and in Fig. 3 for a trape-
zoidal barrier. The potential barrier asymmetry 4 = ¢, — ¢, assumed for the calculations
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Fig. 2. Schematic energy diagram of a metal-insulator-degenerate n-type semiconductor tunnel junction
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Fig. 3. Tunneling characteristics for the Pb-Al,0;-HgSe junction calculated for a trapezoidal barrier
+model: in WKB approximation (dashed lin€) and by matching (dashed-dotted line). For comparison the
experimental characteristic (solid line) is given .

was equal to 2 eV, the mean barrier height was also 2 eV and the barrier thickness was
equal to d = 25 A. It is noticeable that even such a large potential barrier asymmetry
does not explain the extreme asymmetry of the experimental characteristic.
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It is well known [7] that the semiclassical WKB approximation for wave functions
of tunneling electrons can be used only in the case of a slowly varying potential barrier
and for large values of wave vectors in the tunneling regions. For the Pb-Al,O;-HgSe
tunnel junction neither assumption is fulfilled. There are large differences in values of the
effective masses and Fermi energies on both sides of the potential barrier. The values of
wave vectors of the tunneling electrons in the semiconductor electrode are small in compar-
ison to those in the metal electrode, Therefore, we have used a more exact method of
evaluating the tunnehng current without applying the WKB approximation. In this
method the exact solutions of the Schrédinger equation are'matched at the classical turning
points.

The expression for the tunneling current density evaluated by this method 171 has
the form

Egr, S(E,AEr,eV)
emy
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where Eg; is the Fermi energy of the left electrode, AEr denotes the difference of the
Fermi energies in both electrodes, Ey is the part of the energy related to the component
of the wave vector parallel to the surface, m, is the free electron mass. The upper limit
of the integral of £ depends on the energy structure of the semiconductor electrode. For
the calculations we have assumed the simple three band model. In this model the dispersion
relation is of the form [8]
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where ng, is the effective mass-at the bottom of the conduction band, E, is the I'¢—1I'g
energy gap, 4 is the spin-orbit splitting. For this type of dispersion relation the function
of energy appearing in upper limit of integral (1) has the form

tgo (E—AEx+eV|) (E—AEg+[eV|+ Eo) (E—AEp+|eV|+4)
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The barrier transmission coefficient D is given by
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where mg(E) is the energy dependent effective mass of the electrons in the conduction-
band of the HgSe eleetrode [8], ky and ky are the one dimensional wave vectors of tunnehng
electrons in the semiconductor and metal electrode, respectively
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where f(E, AEg, eV} is given by Eq. (3). The exponential term y is given by

- L d x)d
= WJ‘K‘(X) x
0 8

with the barrier wave vector x(x) of the form

2my
K(x) = \/?2— (p(x)—E+Ey)

a = 1(0), b = x(d). The potential barrier ¢(x) used in the expression for x(x) has a trape-
zoidal form (see Fig. 2):

X
P(x) = @ +Ep +(pr— @ —leV]) 7k

Using the described expressions for tunneling current and taking their derivatives with
respect to the voltage we obtain the theoretical tunneling conductivity of the junction.

The numerical calculations of the inverse conductivity integrals were performed for
the symmetrical and asymmetrical potential barriers. The theoretical characteristics are
nearly parabolic in shape with a large asymmetry about zero voltage even for a rgctangular
potential barrier. It is woith noticing the large difference between the characteristic calculat-
ed in WKB approximation and that calculated by the matching of wave functions. For
comparison both characteristics for the rectangular barrier are shown in Fig. 1. Neither
theory takes into account the effects connected with the superconducting state of the
metal electrode. Hence, the calculated curves do not show the fine structure near zero-bias
which is seen on the experimental curve. The assumption of the trapezoidal barrier
causes a light shift in position of the maximum. The numerical results of the derivative
resistivity (tunneling characteristics) for the trapezoidal potential barrier are shown in
Fig. 3 (the dashed-dotted line). The values of parameters used for the calculations are:
Epp = 50¢eV, Eg = 0.04eV+5.0eV, ¢, = 2.5+5.0eV, ¢, = 1.5+5.0¢eV, d = 30 A,
mpo/me = 0.03, E, = 0.22eV, 4 = 045eV.

The results of our calculations show that the general shape of the tunneling characteris-
tics of Pb-Al,0;-HgSe Junctlons .depends mainly on the band structure of the HgSe elec-
trode. The potential barr1e1 parameters determine the magnitude of the tunneling resistivity,
but the experimentally observed large asymmetry of tunneling characteristics can be
explained only by taking into account the extreme difference of the wave vectors of tunneling
electrons in both electrodes.

The authors would like to thank Professor L. Sosnowski and Dr. J. Rauluszkie-
wicz for a number of very useful discussions.
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