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THE REFINED BORN APPROXIMATION FOR ATOM-DIATOM
COLLINEAR COLLlSION

By F. MRUGALA AND G. STASZEWSKA
Institute of Physics, N. ébpernicus ‘Uni\':/ersity, Torun*
( Received January 9, 1978)

‘The refined Born approximation introduced by Rayski is used for the description of
a collinear collision of the harmonic oscillator with a structureless particle. Two models
for the interaction potential are discussed. For one of them numencal results are presented
They are in good agreement with the exact ones.” )

1 Introductzon

The modification of the well-known in collision theory Born approxxmanon mtroduced
recently by Rayski, gives not only a poss1b111ty of i improving the results of the original
Born approximation, but also ‘it extends .considerably the domain of its applicability.
The author proved this fact applying successfully his theory to some simple elastic collision
models. Since this method is relatively simple in practice it seems interesting to study its
utility for the description of inelastic collisions. The present work is an ‘attempt in this
direction. The refined Born approximation (RBA) is used to describe an: inelastic collision
of a diatomic molecule with an atom in the simplest realization of this problem i.e.,
a collinear collision’ of the harmomc oscillator with a structureless partlcle ; '

In Sections 2 of this paper we formulate the most unportant elements of the quantum
description of the one—d1mens1onal diatomic molecule-atom colhs1on iti the form essennally
similar to that given in [1]. Section 3 concerns the apphcatlon of the refined Born approxi-
mation for this case. The more general description of the refined Born approximation and
its hitherto existing applications can be found in_[2] and [3]. The most important details
concerning the practical realization of this task are described in Sections 4 and 5. In Sec-
tion 4 we present the results of numerical tests performed for the model with the"in-
teraction potential in the form of a finite barrier, whereas in Section 5 we discuss the
applicability of RBA to the model with an exponential interaction potential.

* Address: Instytut Fizyki UMK, Grudzlqdzka 5/7,.87-100 Torus, Poland.
(99)
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2. Collinear collision of a particle with a diatomic molecule

* The. time independent Schrédinger equation for the collision model given in figure 1
has in the center-of-mass coordinates the form

B2 82 K% 52 . N
[:— 3 W - ﬂ Fre + Vac(9) + Vac - A%, f)] v = Eyp, 1)
SN
o VAVAV,,; L . . -
X

c 8 | A

C~ B center of mass

Fig. 1. Spatial arrangement of colliding objects

where M is the reduced mass of the molecule, 2 is the reduced mass of the molecule-
-partlcle system and E is the total energy. For the interaction potentlals occurrlng in equation
(1) we assume

1 Vac®) = % k(ﬁﬂ”’eq)z,

i.e., the molecule is treated as a harmonic oscillator with ., being the distance between
the atoms B and C in the equilibrium,

2y ' | I71«:0—,1(5"? P = 4 exp I:—&<i_ L 7)], 2
S T Mmp+me
2a) | Vao(®> §) = Afexp [~ (1%~ §)]+exp [— (%l +1 M} 3)

The assumptions 1) and 2) correspond to the model solved exactly by Secrest and Johnson
[1],. whereas 2a) leads to another model in which the exponentially growing (for X— — )
interaction potential. (2) is replaced by the finite potential barrier (3). Under these
assumptions we may transform equation (1) into the form

1 8% o
[— a2z 6—}12- +y2+V(xs y):l"/) S EQP» (4)

where
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or
‘V(xs y) = Vm

for the assumptions 2) or 2a), respectively, where
s Cfmptme -\
V¥ i=4 exp[-—a(—B—J-: x—y)]
Me Y,

V™ = A exp (—20x[) [exp (ay)+exp (—2ay.,) exp (—ay)].

and

The transformation used here is given by
£ =0x, J=0y+Ve
E~ = :SE; I‘;'Iic—.‘i(xs y) = SV(x, y)a

mp+me o ~ m
& = B ¢ = A = SA expl:"‘ < &yeq:ls
me 0

where 6 = (h/M*k*)* is the unit of length and & = hk"/2M"* is the unit of energy which
is equal to the ground state energy of the molecule BC. The formal solution of equation (2)
satisfying the outgoing wave condition may be written as the sum

¥'(x, y) = #1(x, »)+1'x, ),

in which the function ¢'(x, ) is the initial incoming wave whereas x'(x, y) denotes the
scattered wave given by

1x,p) = — Jdx' [dy'G(x, y; X', y IV, Y)9'(x'; ¥)s (3

where G(x, y; x’, y') is the appropriate Green’s function. Choosing the initial wave in the
form o

¢'(x, y) = H((y) exp (— k),

where H(y) is a normalized harmonic oscillator eigenfunction and k; the wave number
defined by the formula

ky = [m(E—21-1)]'?, ©

we assume that the particle approaches the molecule BC, which is in-a state 7, from the
positive direction of the x axis. The effect of the collision is reflected in the asymptotic
behaviour of the wave function v(x, y). This behaviour is described by the formulae

o

lim '(x, y) = Hy(y) exp (=ikpx)+ Y, Ry exp (ikx)H,(y),

x>0 n=0

“lim (%, y) = Hy(y) exp (—ikpx)+ Zo T, exp (~ iy X)H (),

X~ =0
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where
Jo

I = J dx jdy 2—:% exp (ik,X)H,(DV(x, y'(x, ), ®

=ik XYH, WV (x, Y%, y), ¥

which are easy to obtain after inserting into (5) the explicit form of Green’s function [11

[7e]

; /) \ m . . . Iy
“Gx, y; %, y) = — Z 5ik. HlH(Y') exp (ikylx —x']).

n=0

The probabilities of transitions of the molecule from the state I to n, with a simultaneous
reflection or transmission of the 1ncom1ng partlcle through the potential barrier are given
in terms of the reflection, R!, and transmission, T!, coefficients as

ok,
Pr, = - IRY?, ©)
1

T K ox 2

Plfig - k— IT;l_+5In’ . - (10)
‘1 ’
They satisfy the equation

No i g = o )

ZO (Pl,+Pi_) =1 for I =0,1,.., No; (1

where N, is the index of the highest open channel'. The sum occurring in (11) will be
further denoted by X'.

3. The reﬁned Born approxi‘mation

In order to calculate the probabilities defined in the preceding section it is necessary
to know the scattered wave x'(x, ). This function may be found by solving the integral
equation (5). On the basis of the refined Born approximation the solution of this equation
can be obtained by an iterative procedure starting with a function

AO = O BB,

which depends on a certain number of parameters f,, ..., ;. These parameters are then
fitted in such a way that the function y'™ obtained after performing n iterations differs
little from "~ ")(where n may be equal to 1,2,...), and, thereby, it approaches the
exact solution of the considered equation. For practical application this main idea of the
refined Born approximation must be supplied with detailed instructions for the calculation
of the optimal values of the parameters inserted in X IO For thlS purpose Rayski formulat-

1 An open channel is a channel for which the energy of the molecule in the state n, E, = 2n-+1, is
less than the total energy E.
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ed a criterion which after adopting to the investigated model may be expressed as: P
differs little from '™~ if the index of reliability defined by the formula

AT fdx j- Ayl ™ — I(n 1)] (12)

has the minimal value. Thus the optimal values of the parameters f, ..., f, are given
as the solution of the set of equations
24™™
. opj

The scattered wave is not square integrable; therefore the finite length of the integration
range is-a very important element in the definition of the index of reliability. This range
is defined as to give the main contribution to the integrals over x in the formulae (7)
and (8). Its choice depends on the values of the potential parameters 4 and «. The choice
of the functions ¥"(® is restricted only by some general conditions: these functions should
prevent us from obtaining evidently worthless solutions of the problem, and, for practical
reasons, they should be also relatively simple. From many possible functions which meet
these requirements this function which leads to the smalest value of the index of reliability
should be regarded as the best one.

=0 forj=1,2,..,J. 13)

6. Calculations and results for the model with the finite
barrier of interaction potential V'™

‘The calculations were performed with the functions ¥'® in the form

I(O) Z Hn(y) Z :Bnl exp (lliC)

The set of numbers I;, was determmed for different tests according to one of the two
following formulae

1) o ’:l =

fOI‘ l = ‘_ll, —ll"l"l,'..., lz,
Xy —Xy

where the interval x, —x, is the same as defined in the preceding section,

1 1
2) {k,}—{sk}fors-+—,iM—1 . £1,0, £2, 43, .., £ M

and i = 0,1, ..., N,

where k; are given by (3) (/s, /,, N, M are integers, N, is defined in (11)). These functions
linearly depend on the parameters 7. The number of these parameters is J = (N+1)
(L+1), where L is given by
! L=1+1,
or -
= (Ng+1)(dM-1)~1
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for formulae 1) or 2), respectively. In the performed computations we have determmed
the parameters ﬁ,,, as the solution of the following equation set -

aAI(l)
W;—O forn=0,1,..,Nand 1 =0,1,..,L, (149
nl
where
X2 0 R .
Zf(l) — j‘ de(x) j dylxl(l)__xl(O)'Z (15)
exp (— 2<x[x])
We) = 5

j exp (—2a|x))dx

X

Inserting the weight function W(x) into the definition of the index of reliability we modulate
the accuracy of fitting of the function x'“)(x, y) to z"®(x, y) along the interval [xy, x,].
Thus this accuracy is highest for the region of the largest values of the mterac‘uon potential.,
We believe that the above modification of the original Rayski’s crlterlon results in an
improvement of the evaluated probabilities P ; and P ;. For the calculation of these
probabilities we substitute into (7) and (8) the functions xI(O)(x, ) instead of x’(x, »).

The results of the performed numerical tests are exhibited in ‘Tables I—IV. The
best results from the point of view of the theory presented in the foregoing section are
listed in Table I (the columns marked by RBA). The numerical details of the computations
are described in Table II. The comparison of these results with the exact values obtained

TABLE II
Form of the function ¥ '(®) used in computal:on of the RBA probabmucs listed in Tablc I
Test | | . : .
NO I 11 2 M ! N J
it ‘ 15 15 ' — 1 62
2 i5 15 - 1 62
3 | 15 15 - 1 62
4 15 15 — 1 62
.5 . 22 2 —_ 1 ;50
6 | 15 15 _ 1 62
7 — - - 2 1 63
‘8 — ; - 2 1 63
9 — < — 2 1 63

in the present work with the ‘amplitude density functlon method and w1th those ngen
by the original Born approximation: leads to the following conclusions: = ' *

(i) by the use of the RBA one can obtaln results which satlsfy the relatlon ¢! 1) w1th a h1gh
accuracy;.

(ii) the RBA predlcts correctly, ﬁrst of all these probablhtles whlch have relatlvely large
values;

(iii) this approximation preserves the proper relations between small probabﬂmes
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TABLE III

Transition probabilities from state 0 for many values of the “index of rehabxhty” The results for E = 3.5;
m=10, ¢ = 0225, 4 = 0.5, yoq = 1.0, x; = —25.0, x, = 25.0

PR ; Pl d %°©
_ _ - Zo Ao0©) -
0-0 0—-1 0-0 0~1 L L | M| NI J
6371(=3) | .6259(—4) | .1663(1) ! .1169(—3) | 1.664 3528 (© | 9 9 — | 1|3
8199(—3) | .4168(—4) | .1251(1) | .7987(—4) | 1.215 2373 @ | 10|10 — | 1| 42
.8851(—3) | .2687(—4) | .9483(0) | .5186(—4) | .9493 1083 (0) | 11 [ 11| — | 1| 46
A165(—2) | 2277(—4) | .9500(0) | :4802(—4) | .9513 3070(=1) | 12 | 12| — | 1| 50
1258(—2) | 2161(—4) | .9726(0) | .4853(—4) | .9739 1843(-1) | — | — | 2| 1 | 28
1387(—2) | .2312(—4) | .9858(0) | .5108(—4) | .9872 8756(=2) | — | — | 3| 1| 44
$1433(—2) | .2255(—4) | .9925(0) | .4977(—4) | .9940 4696(—2) | 13 | 13 | — | 1 | 54
1481(=2) | .2251(=4) | .9966(0) | .5014(~4) | .9982 1188(=2) | 14 | 14 | — | 1 | 58
1016(—2) | .5130(—5) | .9976(0) | .4493(—4) | .9986 9759(=3) | 15 3| — | 1| 38
9132(—3) | .1102(—5) | .9981(0) | .3441(—4) | .9990 6765(—=3) | 19 | =1 | — | 1 | 38
.9592(=3) | .1347(—5) | .9980(0) | .3524(—4) | .9990 6727(=3) | 17| 1| — | 1| 38
19565(~3) | .1351(=5) | .9982(0) | .3531(—4) | .9992 5825(—=3) | 29| 1|~ | 1] 62
1087(—2) | .1965(—4) | .9981(0) | .4916(—4) | .9993 5052(—=3) | 25| 5| — | 1|62
J1495(—2) | 2250(—4) | .9978(0) | .5030(—4) | .9994 4314(=3) | 15 |15 | — | 1 | 62
: - Exact values
T1503(—2) | .2146(—4) | .9984(0) | .4985(—4) | 1.0000
TABLE 1V

Transmon probabllltles from state 1 for many values of the “index of reliability”. The results for E = 3.5,
‘m= 1.0, ¢ = 0225, 4 =05, yeq— 1.0, x; = ~-25.0, x2—25;0

PR ; : P 7000
) == W o e vZo A0
1<0 | 1-t 1-0 1-1 I ‘ L|{M|NIJ

3797(—35) | .5132(—1) | .3939(—4) | .1862(0) | .2376 9854(—~1) | 19 [ -1 ‘ — i 38
3750(—35) | .5099(—1) | .3684(—4) .2297(0) .2807 8004(—-1) | 17| 1 | — 1 38
.3748(—5) | .5100(—1) | .3689(—4) | .2297(0) .2808 .8003(—1) | 29 1| — 1 62
J7208(—5) | 1572 (0) | .4471(—4) .2877(0) 4450 4702(—1) | 15 3| — 1 38
22064(—4) | 5889 (0) | .4786(—4) | .2188(0) 8077 1059(—~1) | 25 5| — 1 62
1942(—4) | 7342 (0) | .4535(—4) | .1950(0) 9293 TJ423(-2) | — | — 2 1|28
2000(—4) | 7767 (0) | .4629(—4) | .2175(0) 9943 6254(~3) | — | — 3 1| 4
.1806(—4) .7772 0) | 4274(—4) | .2186(0) 9958 .3668(— 3) 9 9| ~ 1 38
1774(—4) | 7775 (0) | 4183(—4) | .2188(0) .9964 .3088(—3) | 10 | 10 | — 1| 42
A790(=4) | 7778 (0) | 4151(—4) | 2190(0) | .9968 | 2677(=3) | 11 | 11 | — | 1 | 46
1921(—4) | 7779 () | 4442(=4) | 21910) | 9970 | 2505(=3) | 12 | 12 | — | 1 | 50
2099( 4) 7780 (0) | .4847(—4) .2191(0) 9972 .2373(—3) 13 | 13 | — 1 54
'2140(=4) | .7780 (0)'| 4935¢(—4) | .2191(0) | 9972 | 2316(—3) | 14| 14 | — | 1 | 58
2150(—4) | 7781 (0) | .4960(—4) .2191(0) 9973 .2266(—3) 1515 — 1.1} 62
S e Exact values

2146(— 4) 1 .7794 (0) | 4985(—4) | .2206(0) 1.0000
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(iv) the above points are the most important consequences of the modification introduced
by Rayski to the original Born approximation;
(v). all presented RBA results are in good agreement with the exact ones.

It seems that the criterion of the index of reliability is of a crucial importance for
the usefulness of the refined Born approximation in the investigation of the collision prob-
lems. The results of the numerical tests collected in Tables IIT and IV can serve as a basis
for an evaluation of its merits in the case presented here. It is easy to see from these tables
that a diminishing of the index of reliability always leads to an improvement of the
respective sum. of probabilities £’ and almost in- all cases it changes properly the values
of the large probabilities. But the influence of the: “index’”” -on the small probabilities is
not so strong. These facts result from the variational nature of Rayski’s procedure. Thus;
the index of reliability defined by (12) (or by (15)) can be used indeed as a measure of
correctness for the global description of a given problem rather than for its particular
elements.

The interval [x,, x,] should include the greater part of the potential range. However,
in order to achieve a sufficient accuracy in the fitting procedure for a large interval [xi, %21
we must take, in principle, a function ¥'(® that depends on a large number of parameters.
This enlarges the computational effort needed. Thus, it would be desirable to have a more
precise criterion for the choice of the optimal interval [x1, x,].

3. Discussion of the applicability of the RBA to the modél with the exponential interaction
potential VS~ : o

The essentially new point of this model, as compared with that described above,
is the infinity of the interaction potential for x —» —co. Formally, there is no obstacle
in applying the refined Born approximation to this model. In fact, also in this case it is
necessary to find the scattered wave only for a finite range of the x variable. As before,
this is connected with the possibility of reduction of the infinite integration range over x
in (4) and (5) to the finite interval [x,, x,]. However, in this case such a possibility results
not only from decaying of the interaction potential (for x -» +00), but also from vanishing
of the wave function y'(x, y) (for x — —o0). This is a source of some practical difficulties.
Namely, we have not enough information even for a rough determination of the point x,
because the function ’(x, y) is unknown. In consequence of this difficulty it is unlikely
that one could obtain a reasonable result by applying the RBA in this case. For the correct-
ness of the calculated coefficients R, and T it is necessary to achieve the best fit of the
functions x'™ and y®~" just near to the point x,, where the potential V577 (x, y) has
large values.

6. Summary

The numerical results presented in Section 4 indicate that the refined Born approx-
imation is well-adopted for the description of the inelastic processes. Our calculations
were performed for the one-dimensional model with the low barrier of the interaction
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potential ¥™ only. We believe that the RBA may also be successfully applied to the
high potential barriers in this model as well:as to other models. The most serious
difficulty which could appear in further applications of this ‘approximation concerns
a: proper estimation of the integration interval occurring in Rayski’s criterion. For-
tunately, for many models existing in the theory of inelastic collisions such an estimation
could be easily obtained from knowledge of the shape of interaction potential. As we
have shown in- Section 5, it would be, however, extremely difficult for the case of the
exponentially growing (for x — —o0) interaction potential. Therefore, the RBA is rather
inadequate for the description of the model given by Secrest and Johnson. A rough deter-
mination of the above mentioned interval can -prove to be sufficient. Our numerical
results can serve as an example. However, in order to make the refined Born approximation
an efficient procedure for solving collision problems one should, in ‘our oplmon supply it
with a precise criterion for the choice of the optimal integration range in' the formula
for the index of reliability.

" The authors wish to express their gratltude to Professor L. Wolniewicz for his interest
in this work and useful advices. They also wish to thank Professor S. Dembifiski and Mr.
AL Raczynskl for helpful discussion.

REFERENCES

{11 D. Secrest, B. R. Johnson, J. Chem. Phys. 45, 4556 (1966).
2] J. Rayski, Acta Phys. Pol.- B5, 631 (1974).
{31 J. Rayski, J. Comp. Appl. Math. 3, 31 (1977).



