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The region of interatomic distances near the classical turning point is included into
the unified Franck-Condon (UFC) treatment of pressure broadening of spectral lines to deter--
mine the profile of blue wings. Assuming the radial wave functions in the form of Airy func-
tions a UFC line shape formula is transformed to a form in which both the classically acces-
sible and inaccessible regions are taken into account. In the asymptotic (classical) case this
formula yields a quasistatic profile with Boltzmann factor included.

1. Introduction

Since in 1931 Jablonski [1] récognized the analogy between the pressure broadening
of spectral lines and the production of molecular spectra there have been many attempts
to describe the line shape in terms of free-free Franck-Condon factors [2-13]. Jablonski
[2, 3] himself and others [6-12] have indicated that in the analysis of line wings the JWKB
wave functions may be very useful. The JWKB approximation was also applied in the
“unified Franck-Condon” (UFC) treatment developed recently [11, 12] which permits
calculations of the intensity distribution in the entire frequency range of the broadened
line. The characteristic feature of the UFC treatment is that its line shape function can be
expressed by means of Condon points (or stationary phase points) so that each frequncy
within the pressure broadened line profile can be associated with corresponding inter-
atomic separations. The JWKB-UFC intensity distribution was shown to be given by
a certain universal line shape function (Eq. (5.28) of Ref. [11}), which appeared to be very
important in the analysis of profiles of satellite bands. '

The JWKB approximation fails, however, when Condon points are near the classical
turning points. It is the purpose of this paper to evaluate the UFC line shape formula using
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the wave functions valid in the vicinity of classical turning points. The region of inter-
.atomic distances near the classical turning points has recently been taken into account
by Bieniek [13] in his calculations of far wing profiles. Using, what he called the uniform
JWKB approximation, he derived an analytic expression for the Franck-Condon overlap
integral. He did not bother, however, with the analytic angular momentum decomposition.
The present paper intends to include the traunsition occuring in the vicinity of classical
turning points to the UFC theory. These transitions are very essential first of all for blue
wings of spectral lines, where they can give rise to the appearance of line profiles differing
markedly from those resulting from traditional line wings theories. As it will be shown
below the method presented here enables us to estimate the influence of such transitions
on the line shape. First of all, it makes it possible to determine deviations of the real shape
of line wings from the quasistatic profile.

2. The UFC profile for the Airy wave functions

In the UFC treatment the intensity distribution I(x) in the broadened line is found
to be of the form (cf. Eq. (2.48) of Ref. [11])
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where x = w—wy -4 is the frequency displacement from the impact-shifted line centre,
N is the density number of perturbers. Here y and 4 are the half-width and shift of the
impact theory. The function j(x) is given by
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where the summation is over the quantum numbers / of the angular momentum of the

relative motion and the symbol {...) indicates the average over initial wave vector k;
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of the perturber (or the initial energies &= —21—, where p is the reduced mass of the

, I

I(x) = )

radiating and perturbing atoms j.

 In Eq. (2) k; is the wave vector of the perturber for the final level of the radiator
and R denotes the radius of a macroscopic container surrounding the radiator such that
47R3/3 is the total volume of a gas. 4,(x) is the overlap integral:

Ax) = [ w0 dr, 3)

where »{(r) and »{"(r) are the radial wave. functions of the perturbing atom moving in
the field of the radiating atom for its initial and final state, respectively. Both wave -func-:
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tions. are assumed here to be normalized to unity with the boundary condition: P{(R)
= p{O(R) = 0.

In the previous paper [11] the overlap integrals (3) were evaluated using the JWKB
wave functions, so that the effects due to transitions in the neighbourhood of classical
turning points could not be included. In order to take into account such effects we assume
now the radial wave functions in the form [14, 15]:

p(r) = B Ai (—n{(1), @

where Ai(—7) is the Airy function and
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where ¥;(r) is the interaction potential for the initial level of the radiating atom and r
is the classical turning point for the initial state such that k{’(r(’) = 0. In Eq. (4)
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is the effective interaction potential for the initial level of the radiating atom. The final
level wave functions are given by identical expressions with the replacement of index “i”
by “fQ,.

Eq. (4) represents the exact solution of the Schrodinger equation in ‘the vicinity of
classical turning points, where n{(r) can be approximated by

nw) = aPr—r®). (10)

This approximation strictly holds for distances at which U(r) can be expressed as a linear
function of 7. The normalizing factor B{" is so chosen that for interatomic distances situ-
ated far from the classical turning point Eq. (4) becomes identical with the usual JWKB
wave functions:
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This follows directly from Eq. (4) if one applies the asymptotic form of the Airy function
for large values of the argument n(r):

FNT1/4
Ai (—n(r) ~ ["'—’(?/1. Sin [% ' 4 Z—J (12)

By substituting Eq. (4) into Eq. (2) and representing the Airy functioﬁ in its integral form
the overlap integral may be evaluated analytically (cf. Appendix of Ref. [13]):
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Here we have also made use of Eq. (10).

Eq. (13) may be reduced to a simpler form if we take into account the Condon points
[11] defined as such interatomic separations at which radial momenta in the initial and
final state are equal, i. e.

k;i)(rc) = kf)(rc = kl(rc)' (15)

Because in the vicinity of classical turning points we have
i), 2u g i e
) = | 2 e 16)

and similarly for k{"(r) we obtain from Eq. (15)
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Since, according to Eq. (15),
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To find the line shape function in Eq. (2) we replace the sum over angular momenta /
by an integral and assume the Maxwellian distribution of initial energies. Then we get

from Eq. (2) and (13)
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Eq. (21) may be further simplified if we assume that the Condon point r, is close enough
to the classical turning points r? and r® so that F¥) and F{® can be approximated by
the derivatives of effective potentials at r:
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Under these assumptions £ and F{” may be treated as independent of the initial energy,
so that Eq. (21) may be transformed to the following form

2 &y
i) = b J A1+ 1) -2 (l) 70 Idﬁ ¢ FT| AL (—&)2. 24)
0 -0
Introducing a new integration variable
2
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Let .us note that according to Eq. (20)

. , aAvV(r)\
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where AV(r) = Vi(r)- Vi(r) is the potential difference. Using Eq. (20) and (23) we have
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gration over u so that Eq. (26) becomes

where F{? = — ( ) = - V{(r,) the integration over / may be replaced by the inte-
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where
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a(u) = ﬁ(m) [+ D], - (39

The relation between T, and the variable # may be found using Egs. (29) and (33).
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3. Quasi-static limit

Let us consider now the case when the initial potential curve is strongly repulsive.
This may correspond, for instance, to the blue wing of a spectral line arising due to transi-
tions between repulsive branches of potential curves. In such a case the Condon points r,
are situated very close to calssical turning points.

For transitions between repulsive branches of potential curves the lower limit of
integration 7, in Eq. (38) is negative (7, < 0) so that M(x) may be written as the sum

M(u) = M, () +M_(u), (40)
where
M_(u) = fdr exp [—a(u)t] | Ai (—17)%, (41)
and ’
M_(u) = 'Tg"[df exp [o(u)c] | Ai (1)) “2)

The integral M _(u) takes into account effects originated in the classically inaccessible
region (r < r,). Since for large positive ¢ the function Ai(z) decreases exponentially, the
contribution to the integral (40) coming from the function M <(u) is much smaller than
that given by the function M . (). Hence in the first approximation we can take M(u)
~ M_(u). ‘ »

The next simplification may be achieved if we apply the asymptotic form of the Airy
function Ai(—1) for large positive 7 (cf. Eq. (12)). In such a case one obtains from Eq. (41)

) 1 ;“O e—a(u)t
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By replacing sin? (; 324 Z) by its average value 1/2 we get the asymptotic form of

the M(u) function:

1
Mu) ~ ———. 44
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After substitution of this formula into Eq. (35) one obtains
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With this S(x) Eq. (34) yields
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This is the usual one-perturber quasistatic distribution [11].
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Let us emphasize that for the blue wing, arising due to transitions between repulsion
parts of interaction potentials, the Boltzmann factor usually plays a very essential role.
Sometimes it can give rise to the exponential decrease of the intensity distribution in the
blue wing as observed in some molecular bands (cf. e. g. the high frequency wing of the 4.3 p
band of CO, [16]). The inaccuracy involved by the quasistatic approximation in the line
shape analysis of blue wings can be estimated by investigating the deviations of the total
function M(u) (or even M_(x) only) from its asymptotic “quasistatic” form given by

Eq. (44).

4. Summary

Assuming the wave functions in the vicinity of classical turning points in the form
of the exact solution of Schrédinger equation for the linear potential the UFC shape of
line wings has been derived. It was shown that in the asymptotic case (when only classically
accessible region is included) this formula yields the well-known quasistatic intensity
distribution. This quasistatic distribution contains the Boltzmann factor, which for transi-
tions between repulsive parts of potential curves (blue wings) may lead to the line shape

of an exponential type.
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