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Varjous low density approximations, including that recently proposed by Szudy and
Baylis, are discussed and compared between each other and with the Anderson-Baranger
theory, by means of numerical calculations using a square well frequency perturbation. It is
concluded that the Szudy-Baylis approximation is the most accurate, in addition to being
the simplest unified low density approximation available. In the theoretical development, we
retain the possible variation of the dipole moment amplitude during collisions.

1. Introduction

Jablofiski [1] was the first to give a fully quantum-mechanical theory of pressure
broadening of spectral lines, by considering the radiating and perturbing atoms as cons-
tituting a single large molecular system. In order to obtain tractable results, Jablonski
showed that at sufficiently low densities and in the line wings, the N-perturber spectrum is
well approximated by N times the spectrum that would result if there were a single perturber
in the containing volume. This widely used one-perturber, or nearest-neighbor approxi-
mation, when supplemented by the impact approximation [2, 3] in the line center, provides
a complete description of low density spectral profiles (of isolated lines). However, the
fact that two different expressions must be used to cover the relevant frequency range
constitutes a somewhat annoying feature -of that description.

A unified quantum theory, describing both line center and wings by means of a single,
calculable expression, was formulated by Baranger [4], who applied to the general approach
and ideas of Jablonski the correlation function method, which had been used by Anderson
[5] for establishing a classical unified theory of pressure broadening. Later, Fano [6],
using methods developped by Zwanzig [7], gave a different type of unified theory, which,
although in some ways more restrictive than the Anderson-Baranger theory, has the
advantage of being applicable to the case of mutually overlapping lines [8].

* Dedicated to Professor Aleksander Jabtofiski on the occasion of his 80th birthday.
** Address: Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
H3C 3J7.
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Both the Anderson-Baranger and Fano theories (applied to an isolated line) involve
substantially more computation than does the combination of impact and one-perturber
approximations. Recently however, Szudy and Baylis [9] derived from the Anderson-
-Baranger theory a low density unified approximation which contains only quantities
already present in the impact and one-perturber expressions, and yet describes the complete
frequency range by means of a single expression. This remarkably simple approximation,
termed ““Unified-Frank-Condon” by ‘its originators, we shall prefer to call “Szudy-Baylis
approximation”, as its- applicability transcends. the ‘framework of the Franck-Condon
approximation (it can in fact be applied to the case of degenerate levels, rotational or
otherwise).

The purpose of the present paper is to study and compare the various low density
approximations mentioned above. We do this mostly by means of numerical calculations
of the classical profiles for a square well frequency perturbation, for which case many
of the relevant quantities can be evaluated in closed form. We take the Anderson-Baranger
profile as our “exact” reference, since all the other .low density profiles can be viewed as
approximations thereof. The general conclusion is that the Szudy-Baylis approximation
(more pfe'cisely an improved version of it) is surprisingly good, better in addition to being
simpler in general, than the other approximations studied, both in the line center and
wings: , L L

The paper first presents a rapid review of the adiabatic theory of pressure broadening,
with derivations of the various low density approximations. In particular, a derivation
is given of the Szudy-Baylis approximation, simpler than the original one [9]. Another
novel feature is that we allow for variation of the amplitude of the dipole moment during
collisions. _

- Sections 2 and 3 deal with the basic Anderson-Baranger theory, appropriately modified
so as to accomodate a variable dipole moment amplitude. In Section 4, an expansion
of the spectrum is given which bfings out its structure, and from which the one-perturber
and impact approximations are deduced. In Section 5 we derive the memory function
approximation of Fano, adapted to the adiabatic theory. In Section 6, the Szudy-Baylis
approximation is obtained. Section 7 presents numerical comparisons of the various low
density approximations with the Anderson-Baranger result, for the case of a square well
frequency perturbation. We conclude with a short discussion in Section 8.

2. Basic theory

Following Jabtonski [1], we consider the radiating and perturbing atoms as constitut-
ing- a single large molecule. In the Born-Oppenheimer approximation, the total wave
function ¥, = x, 9., is a product of electronic y, and nuclear ¢.., components, the latter
describing the motion of the nuclei in an effective potential V. The line shape correspond-
ing to transitions between two non-degenerate electronic states e = i and e = f'is given by
(neglecting Doppler effect):

P(w) = Y, Piul {@7wlDI®in) ?8(w—Ejp +Ei) 2.1)
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where D is the matrix element of the total dipole moment operator between initial and
final electronic states, and P, ~ e "% is the relative probability for the initial state
@i (2.1) can be rewritten as

P@)=@n ! | dec@, 22)

where
C(7) = Tr P,De™De " (2.3)
= (D) exp [1 | AHUOIDO)ns @4

is the dipole moment autocorrelation function. In (2.3), Hy; = T+ Vy,; where T,
is the sum of nuclear kinetic energies, and P; = e ##{(Tr ¢™#%). In (2.4), U= V-V,
A(t) = €T de™ ™ for A = U or D, <())a, signifies Tr P( ) and the exponential is time-
-ordered. Note that because P; commutes with H;, and in view of the invariance of .the
trace under cyclic permutation of its arguments, one can.time translate all quantities
inside ¢ >4, by the same amount (time translation invariance under < 4,).

The classical spectrum is obtained if the time evolutions in (2.4) are regarded as
classical, and < >,, as the average over initial positions and velocities of all atoms. Physical
arguments which will be given in reference to the classical picture, also apply to the
quantum case if one thinks in terms of wave packet expansions or of the Feynman path-
-integral representation. : o

(2.4) represents an enormously complicated many-atom problem. Yet, the many-body
aspect can be entirely solved if the following assumptions are made [4, 5] (i) the radiator
is stationary, (i) the perturbers move independently of each other and their interactions
with the radiator are additive,

Viiry - ry) = Z vpi(ry), UQry - ry) = Zgu("j) = Z Uj (2:5)

Jj=1

where N is the total number of perturbers and r; ... ry their position coordinates relative
to the radiator; (iii) the dipole matrix element D factorises:

N
D(ry -+ 1y) = Do [] dr) = I14; (2.6)

where d(r) > 1 as r > o0, D, being the dipole moment of the isolated radiator. u(r) and
d(r) differ appreciably from 0 and 1 respectively only inside some finite interaction volume
about the radiator. With the above assumptions (2.4) becomes

C(e) = DACJ] d,0)exp L1 { diu (01D, @7

= DIC,®T", 2.8)
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where
Cy(7) = {d(0) exp [i{) dtu(t)]d()) ay (2.9

is C(7) corresponding to the presence of a single perturber in the containing volume ¥,
Les us define the one-perturber quantity

g(t) = Lim V[Ci(r)—1] = {d(0) exp [itj dtu(t)]d(z)—1), (2.10)
Voo (4]
where
(> = Lim V{ ), (2.11)
Vo

sums over initial positions and averages over initial velocities of the perturber. Note that
the sum ¢ ) in (2.10) is finite, since the summand differs from-zero only for initial positions
sufficiently close to the radiator that the perturber will interact with it during (0, 7) (roughly
r(¢t = 0) must lie inside a sphere of radius vt, for each velocity v). We can now write, in the
limit N - o0, ¥V — oo, with N/V = n the perturbing gas density:

[C@]Y = [1=N"'WN/VIV(C;~1)]¥ - &, (2.12)

It is convenient to define g(r) = g,(r)~g,(0), i. e.

g(t) = <d(0) exp [ii dtu(H)]d(t) — d(0) (2.13)

and introduce the normalised line shape function
0
J(@) = Q2n)"" | dre %M, (2.14)

¢ | doJ(®) = > = 1since g(0) = 0). We thus have (note that g,(0) = (d*—15)

—

P(w) = D™~V J(w). (2.15)

The density dependent factor ¢"**~1> expresses the fact that the total intensity radiated
increases or decreases according as the dipole moment is increased or decreased, on average,
by the proximity of perturbers.

The fundamental result (2.14), expressing the many perturber spectrum in terms of
the single perturber quantity g(z), was first obtained by Anderson [5] and Baranger [4]
in the classical and quantum cases respectively, assuming d(r) = 1. The underlying assump-
tions, (i)-(iii) above, are best justified at densities sufficiently small that the radiator essen-
tially interacts with a single perturber at a time, for which case (2.5) and (2.6) are automat-
ically satisfied. Nevertheless, the model defined by these assumptions constitutes a good
first approximation for dealing with higher densities, and line shape calculations based
on (2.14) seem to correctly reproduce at least the main features of observed spectral lines,
even at fairly large densities [10]. Corrections to (2.14) can be written down, but they
seem extremely difficult to evaluate {11].

Let us now consider the quantity g(r) in some detail.
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3. Probabilities of g(t)

It is convenient to express g(t) in terms of its second derivative g(z), which is much
easier to anlyse and calculate. We have, noticing that g(0) = 0:

4(x) = 6O+ (det(r—t)é(t). (3.1)

We observe that
g(0) = <dO)w(0)> (3.2)

where we defined
w(t) = iu(t)d(t)+d(z). (3.3)

Also, g(7) has the expression
) = — () exp [1 [ dua(D]w(e)> (3.4)

obtained from (2.13) by applying d/dr, translating by —1, applying again d/dr, and retrans-
lating by +7.

Because w(?) is appreciable during only a finite time interval (the collision duration),
it is evident from (3.4) that g(r) — 0 as t — o, since then at least one of w(0) and w(r)
tends to zero. This in turn implies g(z) asymptotically linear in 7. Explicitly we have,

using jt = jw — fo in (3.1) (we consider the case t > 0; for negative © we use g(—1)
0 0 3 .
= g(1)*):
g(t) = a+Br+g(z), (3.5)
where
g(r) = | di(t—)g() (3.6)
and
o =ig—c= — Oj"otdté(t') = —g(0),
i o :
p=id—b = g0)+ %dté(t) = g(00), 3.7

a, b, ¢, d real. Clearly g(r) vanishes as t — oo, whence the asymptotic behavior

g(r) ~ gu(1) = atpr. (3.8)

This is the basis of the impact approximation, obtained by approximating g(t) by the
asymptotically dominant term Sz, with the result

Jimp(@) = 1~ 'nbj[(0—nd)*+(nb)*]. (3.9
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A better approximation is obtained if g(z) is approximated by the complete g,.(z), result-
ing in ‘thc AndersonfTalman—TraVing profile [12, 13]

Jos(@) - n~ e ™[nb cos (na)+(w —nd) sin (na))/[(w—nd)*+(nb)*].  (3.10)

The Lindholm-Foley constant f has a long history, and its physical origin is well
understood [2, 3]. The constant o = ia— c is less famous, and to get some feeling of its
physical origin, let us consider the strong collision limit, wherein u(r) is assumed large
inside some volume ¥, and nul, together with d(r) = 1, outside V. Returnlng to expres-
sion (2.4), we break the operation < »,, 1nto asum { Do +< >+ < Dy, - Where (D,
sums over only those initial states such that k and only k perturbers meet ¥, during ©, 7).

All the terms (D(0) &'™*? D(r),., k #0, vanish, for the phases &(0, 7) = j dru(t)

are large and ¢*>? is a rapidly oscillating function of initial states, averaging to zero,
There remains

C(x) = D) D(t)yg,. = (1), (3.11)

Fig. 1. For a given velocity v, a perturber .]ying initially inside the volume Vo, = Vo+ V3, V1 = aRr,
meets or will meet the interaction volume ¥, during the time interval (0,_1:)

{10, the probability that no perturber meet ¥, during (0, 7), equals the probability
that there be no perturber inside a volume V,, . = V,+out, o = 7R} (see Fig. 1) at time
zero, i. e. {1Dg, = e "°* (Poisson distribution). We thus have in the strong collision
limit:

C(T) — e—n(vVu+avr) — e—an—vr’ (312)
where v = nov is the collision frequency. Here then,

e —c= Vo, f= b= —av; (3.13)

we thus recover the well known strong collision result for f, while the value of o expresses
the finiteness of the interaction volume!. As we get away from the strong collision limit,
both o and f acquire; in general, an imaginary part.

! The interaction volume is effectively assumed nul in the pure impact picture, where collisions are
punctual in time, implying, so to speak, an interaction region in the form of a flat disc of area zR? and nul
thickness, instantaneously perpendicular to the velocity of each perturber with which it collides.
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In general, § arises from trajectories which completely traverse the interaction volume
(completed collisions) during (0, 7), « from trajectories either starting or ending inside
V,, and g(r) from those both starting and ending inside ¥,. Since d(r) = 1 outside the
interaction volume, we may expect that f is independent of d(r), as we now demonstrate.
We first notice that (by time translation invariance)

B = g(o0) = (m(0, 0)> = {m(~0, 0)), (3.149
where we defined
m(t, ©) = (dfdo)d(t)e?Ed(c) = d(t)e'?“Ow(r), (3.15)
where
B, 1) = j di'u(t’). (3.16)

t

Now, {(m(—oc0, 0)) is of the generél form {F{r(.)}> where F{r(.)} denotes a functional of
the trajectory r(¢), the dot representing the multitime dependence. We can reexpress
{F> in the form '

CF{rO}> = _f dxo{[v/v(xo)JF{r(xo, 0> 2> )} g0 (3.17)

Here, r(xo, 0, v, t) denotes motion along a trajectory of impact parameter g, asymptotic
velocity v, the initial position being at a distance X, from the point of closest approach,
measured along the trajectory; v(x,) is the speed at x, and. { ),, sums over impact
parameters and averages over asymptotic velocities. Defining a time variable s by
ds = dx,/v(x) and s =0 at xo = 0, we get

(F{rQ)}) = _Ojo ds<oF{r(o, v, .+5)} Vg0 (3.18)

where it is understood that the time of closest approach of r(g, v, t) is ¢ = 0. With (3.18)
we can write

B = (m(=o0,0)) = [ dsCom(=0,5)>, = e[d(=0)e® ™ AL - g

= [P =140 (3.19)

where we used d(+ o) = 1. This well known Lindholm-Foley expression of B 12, 3]
is independent of d(r), as was eg;pected. In the quantum case, the sum over ¢ in

(3.19) becomes a sum over angular momenta /, and in @(—o0,00) = [ dtu(t), u(t)
= MMty Mt where by, = —(h?[2m)V? +v{r) + h2I(I+1)/(2mr?), the exponential in (3.19)
being time-ordered.
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4. One-perturber approximation

We now seek low density approximations to the spectrum as given by (2. 14). A natural
procedure would be to expand J(w) in powers of the density n, i. e. set ™ — 1+ng(7)
+4n?g()*+ ... in (2.14) and Fourier transform term by term. This however yields terms
that diverge as w — 0, in consequence of g(t)* ~ t*ast'— 0. So, referring to (3.5), we rather
expand only the part en(» and thereby obtain

J() = Jo(@) + (@) [nh(w) +5 n*h**(@)+ -] (4.1)
where J,(w) is defined in (3.10),

h(w) = 2n)~! ? dre™""g(7) (4.2)

and * denotes convolution products: f(w) * g(w) = | do'f(w)g(w—w"). Because g(1)-0

as T — oo, h(w) is bounded, as well as all the terms in “.1).
Before deducing low density approximations from (4.1), let us first try to interpret
that expansion. Consider

o) = (2n) " Of dre g(1) = h(w)+7n '(bo 2 +aw™ "), (4.3)

the second equality by (3.5). In view of (2.13), we see that i(w) is ¥ times the spectrum that
would result from the presence of a single perturber in the containing volume ¥ (except
at w = 0 where A(w) contains an additional term —#n {(d?>d(w)). Thus h(w), the fluctuating
part of the one-perturber spectrum A(w) about a smooth behavior 7~!(bw—2+aw-1),
can be interpreted as the spectrum radiated by the “molecule” formed by the radiator and
a single perturber in close interaction. Likewise, the convolution power A**(w) is the
spectrum of a molecule consisting of the radiator and k nearby perturbers. All these
“molecular spectra” are folded into J,(w), which means that they are broadened and
shifted in roughly the same manner as the central line, as density increases: this represents
their pressure broadening by the rest of the gas. Expansion (4.1) thus appears as very
physical, breaking the spectrum into a sum of contributions from elementary collision
processes. This interpretation cannot be taken too literally however, for the “molecular
spectra” h**(w) are not positive definite. It is in strong collision cases that it applies best,
for then the negative parts are rather unconspicuous (see Fig. 8).

~ Let us now form a low density approximation by treating the second term in (4.1)
to lowest order in n, and setting J, () = J(0w) = 7-1(nb+wna)/[(w-- nd)? + (nb)?].
We get

J(@) =~ J () +nh(w) (4.4)
= J (@) ~n" *n(bo™? +aw™ )+ nh(w). (4.5)

One can see that JS(w) & n-tn(bo—2+aw™) if |o| > nb, that is, in the wings, J(w)
just cancels the middle term in (4.5), leaving only the one-perturber spectrum nh(w). In
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the line center, we get from (4.4), J(®) & J(@) & Jimy(@); provided n is sufficiently
small. We thus recover the combination of impact and one-perturber approximations.
Note that for small enough n, J, () passes smoothly into ni(w), both quantities being
equal to 7' n(bw2+aw™") in the transition region.

The one-perturber spectrum h(w) is not-a very convenient quantity to calculate
(this is tied to its divergent behavior at @ = 0). A much easier quantity to compute is

o) = —2n)7" _Of dre "% g(). (4.6)

We may then obtain h(w) by using
) = o 2h(w) , 4.7)

which follows by Fourier transfqrming (3.1).

5. Memory function approximation

The memory function formalism was first applied to pressure broadening by Fano
[6], and the ensuing low density approximation has been useful for dealing with mutually
overlapping spectral lines [8]. We will here discuss this approximation in the simpler
context of the adiabatic theory. We first derive it in a manner which shows clearly its
physical meaning.

Let us return to expression (2.7) and rewrite it, using (3.15):

) t N T
C(x) = D] [d0)*+ (f)dtmj(o, DDa = Doc[1di+ 3 1 de (j) dtm (0, 1)

j=1 k#j

N j dt j dt'my0, Ym {0, )+ >4y 5.1
4] 0

i#j k#Lj
N-k T

Using ( [[d?pay = €™ as N,V —> oo, k finite, and [ d, [dt, ... | diy
j=i 0 0 0

T 121 th—1
=k![ dt, | dt,... | dt, we find
(4] 0 0
1) = A+ Y [dimg0, 0+ Y [ di § 'm0, )my0, )+ ->av (5.2)
J O i#j 0 1]

where we defined I(z) by C(z) = D?,e"“z__l)I(r) for t > 0, and I(z < 0) = 0, so that the
line shape

J(w)=n""Rel(w) = n""Re ? dre™™"I(x). (5.3)

2 j{w) has an expression similar to that of P(w) in Eq. (2.1), but with D replaced by hsd—dh;
= ud— ($%2m) [v?, d], and all quantities pertaining to a single perturber.
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Let us consider the- quantity
mi(0, 11)m(0, 1) = dy(0)e'P @ w, (1)d,(0)e P Dy (1,). (5.4)

This vanishes unless perturber 1 is near the radiator at time #,, or else wy(,) = 0, and
likewise for perturber 2 at #,. If for a given multi-perturber trajectory, the collisions of
the radiator with perturbers 1 and 2 do not overlap in time; then, either (5.4) vanishes, or,
2 does not interact with the radiator prior to time 7, at which 1 s still interacting (for (5.9
not to vanish), that is, d,(t) = 1 and u,(f) = O for ¢ < ¢,; we may then write d,(0) =1
= dy(t1), 320, 12) = @,(t1, 1,) that is, m,(0, 1,) = my,(2,, t,) in (5.4). If now it is the case
that the perturbing gas density » is low enough that collisions of the radiator with different
perturbers are (almost) always disjoint in time, we can make the binary collision approxi-
mation {m(0, t)my(0, t5)> 4, & {(my(0, t;)my(t,, £,)>4,, and more generally

<my(0, t)my(0, £5) -+ my 0, >4, & (my(0, tImy(ty, t,) - My(te—1, 4D av
= V¥g(t)g(ty—1y) - gty —t_y). (5.5)

Expansion (5.2) thereby becomes a sum of convolution products, the Fourier-Laplace
transform of which yields (after resummation)

Iy(®) = [io—iong(w)]™" = [io+w’ng(w)] ™, ~ (5.6)

(M for memory), where we defined {g(w), g(®), g(w)} :(]3 dr e (2(2), 8(0), (o)}, and
0

used g(w) = img(w). The resulting spectrum is, by (5.3), a “Lorentzian”

Ju(®) = 1~ 'nB(w)/[(w—nD(w))*+(nB(w))’] (5.7)

with
B(w) = »® Re g(w) = o’nh(w) = nh(w) (5.8)
D(w) = —® Im g(w). (5.9)

By-applying | dre™** on (3.1), we have in analogy with (4.7), g(w) = — w2 [g(0)
o ,

L@, 50 — (0@, 00 = 0)+ T dr8(x) = §(o0) = B, that is
Bw=0)=b D(w=0)=d. (5.10)

It follows that in the line center, (5.7) reduces to the impact profile. In the wings, Jy(w)
~ 1 nB(w)/w* = nh(w), i. e. we get the one-perturber spectrum. ,
The physical meaning of approximation (5.7) is cléar: it is obtained by suppressing
the simultaneous interaction of the radiator with several perturbers, which is justified if the
density is low enough that anyhow only one perturber at a time interacts with. the radiator.
Eq. (5.6) may be obtained in a more straightforward, though physically less
motivated manner, by setting a priori /(w) = [iw — M(w)]*, deducing the density expan-
sion of M(w) from that of /(w), and retaining the first term only. This latter approach is
an example of a general method for obtaining low density-approximations [14], that
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is: express J(w) in terms of a quantity whose density expansion contains no unbounded
terms (at least in the first few orders), contrarywise to the expansion of J(w) itself, and retain
only the first (or first few) terms in that expansion. We will now use this method to derive
the Szudy-Baylis approximation.

6. Szudy-Bavlis approximation
Basically, the Szudy-Baylis approximation [9] scheme consists in setting
J(@) = e "G(w—nd)/[(w—nd)*+(nb)*], (6.1)

expanding G(v), v = w —nd, in powers of », and truncating. A convenient expression for
G(v) is, from (4.1),

G(v) = n~'[(nb) cos (na)+v sin (na)]+[v’ +nb)* i [nh(v) + % n?* 2 () + -],  (6.2)
where J;, equals J,,, Eq. (3.10), but with ¢ = d = 0. To first order in n, G(v) equals

GO = n~ "(nb+vna)+v*nh() (6.3)
= v*nh(v) = nh(). (6.4)

The Szudy-Baylis approximation is thus
Jsp(®) = e "nh(w—nd)[[(ow—nd)* +(nb)?]. (6.5)

At small v = o —nd, G'(v) & n-1nb, from (6.3), so Jgz(w) ~ e™"J,,.(). In the wings,
V| > nb, Jop(w) ~ e™"“nh(w—nd), that is the one-perturber spectrum, - pressure shifted?
by nd and multiplied by e™".

Since (6.5) applies to low densities, we could replace e " by 1, which further simplifies
the approximation by eliminating the necessity of calculating ¢ (in the original approxi-
mation given by Szudy and Baylis [9], e ™" does not appear, and i(w — n{u)) appears instead
of h(w—nd) in (6.5)). However, by retaining e™ ", we considerably extend the range in
density for which Jgz(w) is a good approximation (see Figs. 2-10). This may be understood
in part from the fact that in the strong collision limit, J(w) — é,'”chmp(w) whatever the
density, as was seen in Section 3. Note that Jgz(w) equals e ™ Jy(w) with the denomi-
nator in (5.7) replaced by its value at o = 0.

7. Square well frequency perturbation

To illustrate the discussion of the preceding sections, we petformed numerical calcu-
lations of the classical line shapes for the case that d(r) = 1, and u(r) has the shape of
a square well:

' u(r) = U, r < R,

=0, r > Ry. 7.1

3 We could also retain the pressure broadening of the one-perturber spectrum by the rest of the gas,
by retaining J.s*4(») in (6.3) rather than just A(»). This however would destroy the beautiful simplicity of
the approximation.
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We assume the perturbers to follow rectilinear trajectories of uniform velocity v, so that
g(7) has the expression (we do not average over v)

g(1) = cf dxg ]? 2nodo{exp [‘if diu([(xo+v1)> + 0*]' )] - 1}. (7.2)
- 0 0

With u(r) given by (7.1), g(z), (), etc., as well as all the terms of expansion (4.1), are
calculable in closed form. We choose units such that V', = 4nR}/3 = 1and 7, = 1, where

T, = 2R, /v (7.3)

is the maximum duration of collisions. Here then, the density n equals the average number
of perturbers in the interaction volume V,, while the well depth U and frequency w are
in units of 7, .
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Fig. 2. The functions #*¥w), k = 1,2, 3, for the case U = 1

The numerical results are shown in Figs. 2 to 10. We chose three different values
of U: 1, 6 and 25, so as to illustrate weak, intermediate and strong collision conditions,
respectively. In each case, we first give the “molecular spectra” h**(w), which help to
understand the structures of the line-shapes plotted*. In the figures, “exact” refers to the
profiles obtained via the Anderson-Baranger expression (2.14), while “one-perturber”
stands for e "A(w), 1. e. the one-perturber spectrum multiplied by e, and ATT means
Anderson-Talman-Traving, approximation (3.10). We use the Anderson expression (2.14)

4 The small oscillations in #(w) for the case U = 25, Fig. 8, arise from thé sharp edges of the squate’
well, and represent an effect analogous to optical diffraction.
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exact profile, except near the peak maximum where it coincides with Jas (@) (ATT). Note the scale change
in Fig. 4. At U = 1, the constants g, b, ¢, d have the values: @ = 0.0396, b = 0.355, ¢ = —0.0896, d = 0.903
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as’'our exact reference, as it is the exact solution to a well defined physical model (defined
by assumptions (i)-(iii) of Section 2), with all the low density approximations discussed
here being approximations to it.

One can see from the figures that the Szudy-Baylis approximation is surprisingly
good, much better than any of the other approximations. Note that the presence of the
factor ¢™ " in it is essential to its good fit (at the densities considered). The memory approx-
imation is accurate at densities much lower than those at which Jgg(w) is. We. observe
on Fig. 7 that the memory approximation can produce extraneous ‘“‘satellites”, around
frequency = 10.5 in the present case, arising from the quantity w—nD(w) getting small
in the denominator of (5.7). In Fig. 9, we have a clear illustration of the fact that Jy(w)
and Jgg(w) do not contain multiple collision effects, in that they do not reproduce the
satellite at @ &~ 2U = 50, arising from the simultaneous presence of two perturbers in the
interaction volume (note that the exact J(w) has satellites at w = 25, 50, 75 ..., correspond-
ing to the simultaneous presence of 1, 2, 3 ... perturbers in V,, as is readily inferréd from
considering the #**(w) in Fig. 8). We have here an instance where, due to the rapid decrease
of the one-perturber spectrum beyond the first satellite, multiple collision effects may
dominate the far wings even at very low densities.

8. Discussion

The purpose of the present paper was to discuss and compare various low density
approximations in the adiabatic theory of pressure broadening. Principally, we were
interested in assessing the accuracy of the Szudy-Baylis approximation, which is deduced
in a very simple manner from the Anderson-Baranger theory, but has no clear physical
meaning, as does for instance the memory approximation of Fano. The numerical compar-
isons in Section 7 show Jgg(w) to be accurate over a much wider range of frequencies and
densities than is Jy(w). This conclusion is also reached in a more theoretical manner by
analysing the shape parameters, shift, width and asymmetry, resulting from each approx-
imation: Recently [15], we deduced density expansions for these parameters from the
Anderson-Baranger expression (2.14). The same can be done for the shape parameters
corresponding to Jgg(w) and Jy(w). We find that Jgg(w) gives the correct shift, width and
asymmetry to 3rd, 3rd and 2nd orders in the density », respectively, while for Jy(w), the
corresponding orders are only 1, 1 and 0 (for J,, (w), they are 3, 2 and 2).

Finally, let us mention that although in the present paper we developped the theory
for the explicit case of non-degenerate lines, so as to simplify the exposition, most of
it also applies to the case of an isolated line in general, whether degeneracy, rotational
or otherwise, is involved or not. The theory for such cases was given in a previous paper
[14] where use was made of an adiabatic representation: for a general isolated line, one
also obtains expression (2.14), but with g(z) slightly complicated by degeneracy.
Since the formal derivations of the various low density approximations discussed
in the present paper do not depend on the explicit form of g(z), apart from its
asymptotic behavior, which is the same in the general case, it follows that these
approximations, including the Szudy-Baylis approximation, can also be made in the
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general case of an isolated line. In fact, it is not even necessary to pass through the inter-
mediary of the Anderson-Baranger expression (2.14), with its concurrent -assumptions,
to derive these low density approximations: one only needs the first two terms -of the
formal density expansion of J(w), which is given in a very general form in Ref. [14].
Let us end with the suggestion that perhaps an approximation of the Szudy-Baylis
type, both better and simpler than the memory approximation, also exists for the case
of overlapping lines.
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