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The energy transfer efficiencies and transfer depolarization factors are calculated
for both heterogeneous and homogeneous excitation energy transfer in the very weak coupling
limit between isolated donor and acceptor fluorophore pairs having static isotropic orienta-
tional distributions. Effective average values for the orientation factors are obtained and
shown to be closely approximated by linear functions of the transfer efficiencies themselves.
The use of these approximations is shown to result in simple quadratics relating the transfer
efﬁ01enc1es to the sixth power of the inter-fluorophore separations, rather than the linear
forms found in the equivalent dynamically averaged cases. For homogeneous transfer, similar
approximations in terms of the overall observed depolarization factor are demonstrated.

1. Introduction

The phenomenon of quenching and sensitization of fluorescence by energy transfer
between unlike fluorescent molecules of suitable spectral properties statistically distrib-
uted in isotropic solution has long been rather well described, both on the basis of virtual
dipole-dipole interaction in the very weak coupling limit (Forster, 1949, 1965), and phenom-
enologically by the active sphere model of Jablonski (1954, 1955a, 1957a). The allied
effect of concentration depolarization in (solid) solutions containing only one kind of
emitter is also dealt with quite weéll by the active sphere treatment (Jablonski, 1955b,
1958; Bojarski, 1958), or again by applying the dipole-dipole interaction mechanism, in two
completely different approximations (Ore, 1959, 1971; Hemenger and Pearlstem, 1973).

At the other end of the scale from such statlstlcal donor and acceptor ensembles,
energy transfer between isolated donor (D) and acceptor (A) pairs bound specifically to

* Dedicated to Professor Aleksander Jablofiski on the occasion of his 80th birthday. .
** Address: Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester M20
9BX, UK.
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a stationary macromolecular substrate at a fixed mutual separation has been of interest
to polymer chemists and biochemists as a “spectroscopic ruler” (Stryer and Haugland,
1967) to enable definition of various intramolecular dimensions of interest. The Forster
very weak coupling treatment is generally appropriate, whether the transfer be between
unlike fluorophores (heterogeneous) or like ones (homogeneous). As in the solution
ensemble cases, the former will be identified by quenching of donor and sensitization of
acceptor emissions, the latter (if at all) by depolarization of emission from the pair. To date,
only the heterogeneous case has been exploited experimentally.

Usually the donor and acceptor may be expected to be bound anisotropically to the
substrate, i. e. with some fairly restricted range of mutual dipole orientations upon which,
as well as upon their separation, the transfer efficiency depends quite strongly (Forster,
1951). Within the approximation that these relative orientations are sampled rapidly in
comparison with the transfer and emission rates (dynamic averaging), it has been demon-
strated that, by making use of the “dynamic” depolarization of emission, both sensitized
and direct, due to these reorientational processes, realistic (and unfortunately usually quite
large) limits may be set on derived intramolecular separations (Eisinger and Dale, 1976;
Eisinger, 1976). If, on the other hand, the averaging regime is static, i. e. if instead of an
ensemble of identical D, A pairs each exhibiting the same energy transfer efficiency, there
exists a continuous stationary statistical orientational distribution of D, A pairs, the problem
is more complicated since the effects of mutual orientation and separation on the average
transfer efficiency cannot in general be separated (Dale and Eisinger, 1976). In the follow-
ing, and admittedly more for heuristic than immediately practical purposes, the effect of
a strict static averaging regime on the energy transfer properties (including depolarization)
of D, A pairs at.fixed separations and with isotropically distributed orientations (in the
ensemble) is investigated and compared with the simple results obtained under dynamic
averaging conditions.

2. General theory

2.1. Excitation energy transfer

In the very weak coupling limit, the rate constant u of (one-way) energy transfer has
been shown (Forster; 1951, 1965) to be given by:

1 /RL\® -
= (%) @

where 7 is the first order decay time of D emission in the absence of A, R the D, A separa-
tion and R; a characteristic separation defined by:

R = Ck*n~*®J, 2
where C is made up of numerical and universal constants, n is the refractive index of the
intervening “medium”’, ® the quantum yield of D in absence of A, and J the normalised
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spectral overlap integral of D emission with A absorption.! The dipole-dipole orientation
factor k2 carries the dependence of Ry on the mutual orientations of D and A and is usually
expressed as:

k> = (cos 07 —3 cos O cos 6,)°
= (sin 0, sin 6, cos p—2 cos O cos 0,)* 3

where 0 is the angle between D emission and A absorption dipole moment vectors, 6y,
and 0, the angles between these respectively and the separation vector, and ¢ is the azimuth
of the planes containing D and 4 about the separation vector R (Figure 1). An alternative
formulation, which will prove more useful here, considers the interaction of the donor

Fig. 1. Donor-acceptor pair geometry depicting the angular relationships of two definitions of the orientation
factor

electric field vector with the acceptor (Galanin, 1955; Maksimov and Rozman, 1962;
Steinberg, 1968). Resolving the unit vector D into components along and perpendicular
to R (amplitudes cos 0y, and sin 6, respectively), the field vector F can be considered to
arise as the sum of the field vectors due to these components, of amplitudes 2 cos 0,
and —sin 8, respectively, where the negative sign indicates the reversal of field direction
in the latter case (see Figure 1). On summing these to obtain F and defining as o the angle
it makes with A4, the orientation factor is finally given by:

x? = (143 cos? Op) cos? w. 4.

As is readily seen from both Eqgs. (3) and (4), ¥*> may take on values in the range of 4
(D and 4 parallel-in-line along R) to zero (w = 7/2 or whenever cos ¢ = 2 cot 0, cot 0 )-

* The effect of “pre-relaxation” transfer (Guéron, Eisinger and Shulman, 1967) which may, for very
fast and efficient transfer, enhance (or, for heterogeneous transfer in some cases, even diminish) the transfer
rate relative to that predicted above on the assumption that complete thermal equilibration of the excited
donor has been attained before appreciable transfer can take place (Forster, 1965), is ignored in the
following. In principle, it may be taken into account by adjusting the value of J appropriately, as long as the
very weak coupling limit is not violated.
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An arbitrarily small actual value of x? will lead to a correspondingly small value of R,
and therefore of the apparent intermolecular separation derived for a given transfer rate.

As indicated above, two cases of energy transfer will be considered here, the homo-
geneous and the heterogeneous. In the former case, the one-way transfer rate constant is
the same in both directions, i. e. designating the spectrally identical fluorophores 1 and
20 Pyp = Hyy = . On considering multiple re-transfers to and from the originally
excited fluorophore, the overall energy transfer efficiency to the originally unexcited
fluorophore is readily derived (Forster, 1948; Ore, 1959) to be:

T, = pr/(1+2u1), (5)

where the subscript *“s” will be used to designate homogeneous (“self”) transfer. In the
general case of heterogeneous transfer, allowance will need to be made for a finite “back’’-
-transfer rate due to overlap between the emission spectrum of the initially unexcited
acceptor and the absorption spectrum of the donor. Calling the initially excited fluor-
ophore 1, the generalised transfer efficiency 7, is similarly given by:

To = pyooTy /(U pyLaTy + fanT2). (6)

This, of course, reduces immediately to Eq. (5) when the two rate constants and lifetimes
become identical. When the back-transfer rate is vanishingly small it reduces to the. well-
-known expression for oné-way energy transfer quenching or sensitization efficiency
(e. g. Jablonski, 1971b) on which its derivation was based:

T, = pr/(1+ po). @)

2.2. Fluorescence depolarization

The most convenient description of the polarization of fluorescence of an ensemble
of excited fluorophores photoselected (Albrecht, 1961) from an originally isotropic ground
state ensemble in solution, is the emission anisotropy (EA) r first defined formally by
Jabtoriski (1957b, 1960), but also used implicitly much earlier than this (e. g. Jablonski,
1936, Perrin, 1936), and given in a laboratory coordinate system by:

ro= (Iy—Ig)I, )]

where Iy, Iy are the components of emission polarized in the vertical and horizontal
plane respectively and observed perpendicularly to the direction of propagation of the
exciting light in the horizontal plane, while / represents the sum of any three mutually
orthogonally polarized intensities, i. e..is proportional to the total emission intensity.
As shown by Jablonski (1960), I is given by (I +21y) for linearly V-polarized excitation
and by (21, + Iy) for e. g. “natural” (unpolarized) or circularly polarized excitation. In the
absence of any depolarizing influence, the maximum values of 0.4 and 0.2 will be observed
under these two excitation conditions reflecting the angular dependence of the photo-
selection process and also the fact that, in general, r, = (r/2) where the subscript denotes
“natural” excitation (Jablonski, 1960). )
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Further depolarization occurs if, for any reason, e. g. through torsional oscillations
(Jablonski, 1950) or due to the existence of an effectively anisotropic three-dimensional
transition moment (Jabloniski, 1935) there be a difference in orientation of the dipole
moment vector associated with emission compared with that associated with the initial
absorption process. Provided that all azimuths are equally probable for this reorientation,
the resulting depolarization may be represented by a depolarization factor d multiplying
the initial anisotropy (Soleillet, 1929; Perrin, 1936). Confining further discussion to
linearly V-polarized excitation for simplicity, the EA after one such process may be
written:

r=04d, ©
where

d=(Zcos?0 -1 (10)

in which 0 is the reorientational angle. When a number of such processes occur independ-
ently their effects are multiplicative, as shown by Soleillet (1929), and the EA becomes:

r=04T] (G <cos? 6>—1) = 04T] <dy, (11)

where the averages are included to express possible variation in the @, for the i’th clsas
of depolarizing event.

In the following, the mechanism of depolarization by energy transfer will be the only
one of concern and further discussion will be limited to transfer depolarization factors:

'

dy = 3 cos? O, —% T (12)

where 0y, the transfer angle, has been defined above in connection with the orientation
factor given in Eq. (3). Thus, strictly, only the case of identical (or parallel) D, and likewise
identical A, absorption and emission transition moment vectors is under discussion. If
either or both are not, the two 6 values of Egs. (3) and (12) are not identical and they
cannot be related, in general, by the Soleillet theorem because the requirement for azimuthal
averaging is not fulfilled.

23. Relationships between the orientation and depolarization factors
As can be seen from the geometry indicated in Figure 1, and also from Eq. 3), 0
may be expressed as a function of the three independent angles 6y, 6, and @

cos Oy = sin 0 sin .6, cos ¢ +cos 0y, cos 9, (13

and the relationship between dy and «? in these terms is clear. However, if all azimuths
of 4 about F are equally likely, then the Soleillet theorem may be applied so that, referring
to Figure 1:

dy = [3 cos® (Bp+0g)—3] [5 cos® 0—3]. (14)
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Invoking the geometry of Figure 1 again, it can be seen that:
cos O = 2 cos Op/v/1+3 cos? O

sin Oy = sin Op/~/1+3 cos® 0,
cos (Op + 0p) = cos 6, cos 'OF—sin Bp sin g (15)
so that, eventually:

. (3 cos? 8, —1)?
dr = [i { el (x| Beos o3l (16)
- D .

It is noted that, as in the expression for x? given in terms of the same parameters in Eq. (4),
the two angular variables defining d; are completely separable. Furthermore, the product
of the orientation and depolarization factors, the significance of which will become evident,
reduces to quite a simple expression:

dx® = 2 (2—3 cos? 0p) (1 —9 cos? 8p) (3 cos” w—1) cos® w. an

2.4. Averaging regimes

As has already been indicated, only isotropic angular distributions of the transition
moments will be considered here. The same results would obtain for a number of pseudo-
-isotropic distributions e. g., trivially, random orientations within hemispheres whose
axis of symmetry lies along the separation vector. When the reorientation rates for D
and A within these distributions are fast compared with the emission and transfer rates,
dynamic isotropic averaging obtains, all orientations are sampled during the transfer
and emission times and unique values of {d;) and {x?), independent of the D, A-separa-
tion, obtain. Such a convenient case, in terms of determining intramolecular separations,
is also effectively provided by the highly triply-degenerate transitions of some metal ions.
The experimental use of such probes in “spectroscopic ruling”, now in its infancy (Latt
et al. 1970; Birnbaum et al. 1977; Leung and Meares, 1977), holds great promise in that it
eliminates most or all of the inherent uncertainty in x2 referred to above and associated
with the more classical organic fluorophores having essentially linear transition moments.

At the other extreme, neither D nor A reorient appreciably and static isotropic
averaging obtains. Under these circumstances, neither x? nor dp are separable from the
inter-fluorophore spacing except at very low transfer efficiencies where x> effectively
approximates its dynamic value while dp approaches a limit which, as will be shown
below, is not identical with its dynamic isotropic average value. The case in which static
isotropic averaging obtains for one fluorophore, dynamic or effectively dynamic for the
other is also considered below. If reorientation of D andfor 4 occurs on the same time
scale as emission and transfer, the time-dependence of x? in the rate equation, as also that
of dr, would need to be taken into account, a task which will not be attempted here.
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3. Orientation and depolarization factors for transfer between isolated donor and acceptor
pairs

3.1. Some limiting values

From the definitions of Eqs. (3) or (4) it is readily seen that the well-known dynamic
isotropic average of the orientation factor, (x?), is 2/3. Inspection of Egs. (5) to (7) shows
that this value will effectively be closely approximated in the static isotropic case when
the transfer efficiency is very low so that e. g. u < 1. The dynamic isotropic average value
of the transfer depolarization factor, which must of course be zero since under these
conditions all memory .of the original photo-selection is immediately lost, can be seen
directly to be such from Eq. (12), as also from Eq. (16) in which the average of the
second factor is similarly identically zero.

The often quoted “‘static isotropic average™ value of 0.476 for the orientation factor
(Galanin, 1955; Maksimov and Rozman, 1962; Steinberg, 1968) is actually ((x>)? = 0.6902,
the square of the average of x, which was derived for heterogeneous transfer to a rigid
ensemble of acceptors which are statistically randomly distributed about the donor with
respect to both distance and orientation. The transfer depolarization factor for this case
has not been calculated directly, although Jabtoriski (1971b) has obtained estimates for
it within the framework of a combined active-sphere/Férster transfer model.

For the case of homogeneous transfer in a similar ensemble, for whose Forster transfer
and depolarization properties no direct closed solution of the differential master equation
appears to exist (Knox, 1968), the orientation factor has been replaced by its dynamic
isotropic average value of 2/3 in most cases (Forster, 1951; Knox, 1968). Transfer depolar-
ization has usually also been considered complete, i. e. the dynamic isotropic average
value {d;) = 0 assumed, although a weighting due to the orientation factor has also been
introduced (Galanin, 1950; Ketskeméty, 1955; Weber, 1966):

(dry = {dp®H[{ic?D. (18)
This value of 0.04, which is readily obtained from Eqs. (3), (12) and (13) or Egs. (4) and
(17), actually corresponds to the static isotropic average for isolated donor-acceptor pairs
(either like or unlike) in the limit of low transfer efficiency and will not strictly apply
elsewhere. Jabloniski (1970, 1971a) has also obtained estimates for the value of the depolar-
ization factor for homogeneous transfer in a solution ensemble, again within a combined
active-sphere/Férster model. These and his corresponding estimates for the heterogeneous
case indicate an upper limit for the average transfer depolarization factor of about 0.025
which, as a function of the model, is independent of the acceptor concentration.

3.2. Full static averaging

3.2.1. Heterogeneous and homogeneous transfer efficiencies

On separating out the orientation factor, the one-way transfer rate constant defined
in Egs. (1) and (2) may be written:

h= 3 <ﬁ> , (19)
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where 4 = (Ry/R)S with R§ defined in the classical way as
R§ = 2 Cn*0J. (20)

Transfer efficiencies averaged over the static ensemble of isotropically distributed orienta-
tions are most readily derived by substituting Eqs. (4) and (19) into Egs. (7) and (5) for the
heterogeneous and homogeneous isolated donor-acceptor pair cases respectively:

= ( 354 1)
T \1+3 %4
and
34
T = ( ———s—). 22
’ <1 + 31c2A> 22)

It may be noted from these relationships, as also directly from Egs. (5) and (7)“, that
homogeneoustransfer efficiencies are always precisely one half the heterogeneous efficiencies
observed for twice the transfer rate (e. g. at 27/ ~ 0.89 of the separation):

T(w = 0.5T,(21) (23)
or, in the orientationally isotropically averaged cases considered here:
T (4) = 0.5CT,> (24). (24)

Substituting x = cos 0, ¥ = cos @ and remembering that the angular weighting elements
for integration are sin 0y, dfy, and sin wdw,? the average of Eq. (21) becomes:

11 1

([ 3A40+3x%) L[t _
I JJ<I+%A(1+3x2)y2>dXdy J\/aarcan(\/a) x (25)
0 0 0

where a = 3 A(1+3x?). Similarly for the homogeneous case:
1

1 —
:/—5 arctan (y/ b)dx), (26)
where b = 34(1+3x?) = 2a. Numerical evaluation of these integrals then yields the
desired efficiencies.

(Ty =+ (1

0

3.2.2. Effective average values of the orientation factor )

Although in general an average value of the orientation factor cannot be defined
independently of the transfer rate, it is instructive to consider effective average values
(Jones, 1970) defined for the heterogeneous case by:

\ % <K2>effA

(TS = -, 27
LR WD @0

2 It should be noted that, although fp and o are separable in this formulation, w corresponding
to a given A4 is not independent of 6p. The order of integration is therefore not generally arbitrary: the
average over w-space for a constant 0p must usually be performed first.
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so that:
KT
K Dgp = =3 (28)
e = S a0 (T
and similarly for the homogeneous case:
T
(K = == (29)

3 A(1-XT))

The effective average values of the orientation factor so defined may then be obtained
by substituting into these equations the numerical values of the average transfer efficiencies
obtained above. They are plotted as a function of the transfer efficiencies in Figure 2. The

LTgD> —
0.1 0.2 0.3 0.4 0.5
0.8 T T T T T T T T T 0.04
« 08 | - 0.03
i ' , | 1
t 04 + 1 002 <dy>
2
<Kt i a ]
02 |- 4 o0t
0 1 1 1 ! I i 1 1 L 0
0 0.2 0.4 08 0.8 1.0

Fig. 2. a — Effective average value of the orientation factor {&*>esp, and b — transfer depolarization
factor <{dt)> for static isotropic distributions of donor and acceptor orientations as a function of the hetero-
. geneous or homogeneous transfer efficiencies, {Ty> and <{T> respectively

correspondence between the values for heterogeneous and homogeneous transfer as func-
tions of (T,> and 2(T,> is a consequence of the relationship between the efficiencies
expressed in Eq. (24). It is evident from Figure 2 that, to an equivalent and quite close
approximation, the effective average values of the orientation factor are almost linear
functions of the transfer efficiencies and may be written:

(et = 2 (1—CT) = 2 (1 =2(T)] (30)

Thus, as the efficiencies become low, the effective average value of the orientation factor
approaches the dynamic isotropic value of 2/3, while as they tend to their maxima, it
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approaches zero, both values being confirmed by substituting the appropriate limits
(4 — 0 and A — oo respectively) of the integrals in Egs. (25) and (26) into Egs. (28) and
29). '

3.2.3. Transfer depolarization factors

Of themselves, of course, the above results for the homégeneous"é'ase‘are of little use,
since the emissions of donor and acceptor cannot be distinguished except by their polar-
izations. In general, the average transfer depolarization factor may be written:

(dry = d:THKT (3D

-and, again because of the relationships between homogeneous and heterogeneous transfer
.expressed in Egs. (23) and (24), the transfer depolarization factors for the two cases are
simply related:

{dr>(A) = {drg) (24). (32)

On combining Egs. ), (16) and (21), making the previously. used angular substitutions
and performing the appropriate analytical integration over ®, the numerator of Eq. (31)
becomes, for heterogeneous transfer:

1(2— 3x%) (1-95%)

: 1 —
degT> = % ‘[ — arctan (y/a)dx

il (152) Ja
[
L (2—3;&(;%2) | 1(, Tn
+ﬁf1 ,(1+3x2)2 \—/—a—alctan(\/a)dx—ﬁ<7f 3—7;\) (33)

0

with a defined previously. The equivalent expression for- {dy; T, contains b for a, and
divisors of 8 and 84 replacing 4 and 24 in the above. The average transfer depolarizations,
given by numerical evaluation of these integrals along with the results for the transfer
efficiencies already obtained, are presented in Figure 2 where it is seen that, like KD ogr
also displayed there, they correspond as functions of <7,> and 2<T.». The limits of {dr)
at zero and maximal transfer efficiencies are 0.04 corresponding to the value given by
Eq. (18) and zero, as again may be confirmed by taking the appropriate limits of the integrals
in Eq. (33). That the value of (dy) for maximal transfer efficiency is the same as the dynamic
isotropic average value reflects the fact that all orientations are equally sampled under
‘these two conditions. ' B . sl

. Of interest in the homogeneous system is {(d., the average depolatization observed
for emission from both members of the pair — that from the originally excited fluorophore
retaining its full polarization, that from the partner being depolarized as described above:

{dy = 1x(1=<TH)+ Cdrp <T
1= T + {dr T)- : (34)
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Since the second average factor is very small (always < 0.007), there should be a close to
linear relationship between (d,> and (T,> and therefore, according to Eq. (30) above,
between (k%> and {d,. This is confirmed by the appropriate plot (Figure 3) in which
the approximate relationship:

CONEE T CAT) (35)

is visualized.

2
N

0 1 ! 1 i L 1 I 1

0.5 0.6 0.7 0.8 0.9 1.0
<dg> —=
Fig. 3. Effective average value of the orientation factor <« ¢ as a function of the overall depolarization

factor {d;> for static isotropic distributions of like donor and acceptor orientations over the complete range
of homogeneous transfer efficiency

3.2.4, Effect of approximations on derived separations )

The extent of the errors in using the approximate relationships of Egs. (35) and (28),
or equivalently (29), are depicted in Figure 4. The limits at maximal transfer efficiency
may be obtained by appropriate substitution of the integrals, expansion of the arctangents
and neglect of all but the dominant terms:

and

lim [’32*—(2@ S 1-)] - (-"-)2 Fﬂi‘@] {6——5 [log (2_*@}} ~1.031.  (37)

A= 00 <K-2>eff 4 \/g \/5 .

By inspection of Figure 4 it is seen that in neither approximation of {(x?}; is the error
ever as high as'59;. In terms of derived inter-fluorophore separations, the error in R under
these conditions will always be less than 1 7> and over the majority of the range of hetero-
geneous transfer efficiency and the whole of the range of homogeneous transfer efficiency,
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it will be less than 0.7 %. In practical terms these errors are entirely negligible in comparison
with the uncertainties of the validity of the isotropic (or pseudo-isotropic) model investi-
gated here.

<Tg > —

0 0.1 0.2 0.3 04 0.5
1.04 i ] ! T T T 1 T T i
102 - b J
1.00
098 L , i
0.96 - )

i SN S ! I 1 i L
0 0.2 04 0.6 08 1.0
< Ty > —

Fig. 4. Ratio of linear approximations a: —(1 —<(Ty>)and —(1 2{Ts>), and b: —(2<ds> — 1) for the effective

average value of the orientation factor to its true value <K2>eff as functions of the heterogeneous or

homogeneous transfer efficiencies, <Tq> and <{Ts> respectively, for static isotropic distributions of donor
and acceptor orientations

It is interesting to note that, by substituting the approximate formulas of Eq. (30) for
(k%) back into the exact ones of Eqs. (28) and (29), and inverting for A:

(T I

A 0 = (38)
A—<(TY)*  (1-HT)
compared with the values obtained fog A in the dynamic averaging limit of:
T, T,
A= = , 39
1-T, 121

where A in both cases contains the dynamic isotropic average value of 2/3 for x2. In terms
of the observable depolarization parameter {d,> ~ 1—<T.), Eq. (38) for homogeneous
transfer becomes: ‘
1—<d,
A~ — < >-2 , (40)
(2dy—1)

but, of course, there is no equivalent expression for the dynamlcally averaged case in
which there is no way that energy transfer between isolated poirs can be detected.

e

3.2.5. Mixed static and dynamic averaging A

For completeness, the case in which ene of the fluorophores reorients dynamlcally,
or equivalently is completely three- dimensionally degenerate, the other being static but
also with its orientation isotropically distributed in the ensemble, is considered here. Since
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either fluorophore may be initially excited with equal probability in the homogeneous
case, the overall depolarization factor will always be 0.5, independent of the transfer
efficiency, so only the heterogeneous case need be considered. Similarly there, the transfer
depolarization factor will be independent of the transfer efficiency, and identically zero
since all memory of initial orientation will be lost either immediately after absorption
before transfer or immediately after transfer before emission. Taking the case where the
acceptor is dynamically averaged and following the methods used previously, but substi-
tuting the average value of 1/3 for cos? w directly:

1
2 A(143x%) 2 _
Ty=|->"""7 {dx=1— — /Barctan B), 41
o _[1+%A(1+3x2) 3A‘/ WB 40
0

where B = 34/(2+ 4). The identical result is obtained using the definition of 2 given
in Fq. (3) which is completely symmetrical in D and A angular parameters which are
independent so that the order of integration is unimportant. An effective average value

<Ts> e
0 0.1 0.2 0.3 0.4 0.5

0.54

0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Effective average value of the orientation factor <> ets for mixed statically and dynamically averaged
isotropic distributions of donor and acceptor orientations as a function of heterogeneous or homogeneous
transfer efficiencies, (T,> and (T> respectively

of the orientation factor may be calculated as before and is displayed in Figure 5 as
a function of (T,> upon which it shows no obvious simple dependence. The limiting
value at maximum transfer efficiency is (/3/7) ~ 0.551.

The author wishes to thank B. C. Chambers who programmed the numerical integrals
appearing in this work, Dr. L. R. Walker for invaluable discussion on the relationship
between the two formulations of the orientation factor used here, and Drs: W. E. Blumberg
and J. Eisinger for many rewarding hours of discussion on the problems of energy transfer
and fluorescence depolarization while the author was a Member of Technical Staff at Bell
Laboratories, Murray Hill, New Jersey where all the above took place and where this
work was initiated and partially completed.
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