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The variation-perturbation scheme due to Sinanoglu was applied for the calculation
of the second-order pair energies in LiH, BH and FH using the minimal Gaussian geminal
basis set approximation for the first-order pair functions. According to the proposed approach
the first-order pair function for each orbital pair was represented by a single Gaussian geminal,
whose all non-linear parameters were carefully optimized. The second-order pair energy
calculations have been performed in two steps. First, the non-linear parameters for each
Gaussian geminal were optimized using modified second-order pair energy functionals and
rather crude SCF reference functions. In the second step the Gaussian geminals are treated
as already fixed and the final values of the second-order pair energies are computed with quite
accurate SCF reference functions. In this final step only a single linear variation parameter
is optimized. The most attractive feature of the minimal Gaussian geminal bases is their
conceptually simple analytic form which allows for a qualitative analysis of the intra-pair
correlation effects, This is also followed by quite reasonable accuracy of the computed
second-order pair energies. For LiH and BH the minimal Gaussian geminal basis set approxi-
mation is shown to recover ca. 75 per cent of the most accurate second-order correlation
energies. The SCF wave function employed for the FH molecule was much poorer than
those for LiH and BH. Also some of the Gaussian geminals have not been fully optimized.
In spite of this, the present approach gives nearly 60 per cent of the second-order correlation
energy calculated using the many-body perturbation methods. The present results unam-
biguously indicate a very high efficiency of the Gaussian geminal bases in molecular correla-
tion energy calculations.
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1. Introduction

The restricted Hartree-Fock (HF) model [1] is known to account for the major
portion of the total electronic energy of the closed-shell atoms and molecules. The remaining
part of the non-relativistic electronic energy is attributed to the electron correlation effects
[2]. In spite of its relative smallness the electronic correlation energy frequently'plays
a decisive role in the prediction of a variety of physical and chemical phenomena [2-5].
The understanding and calculation of the electron correlation effects represents one of
the primary goals of the present-day quantum chemistry.

Going beyond the HF level, though formally simple, represents a formidable task [1, 5].
‘As far as the instantaneous correlation of the electronic motions can be considered as
a small perturbation to the HF model, the use of the perturbation theoretic approaches
is recommended, provided they recover a substantial portion of the correlation energy
in the lowest orders. According to several recent calculations [6-10] the ordinary Rayleigh-
-Schroedinger perturbation theory built upon the HF approximation provides as much
as ca. 80 per cent of the total correlation energy already in the second order. There are
also some indications that this second-order correlation energy is nearly constant for
a wide series of many-electron systems {6, 9]. However, in order to obtain the limiting
values of the second-order correlation energies one needs fairly flexible first-order wave
functions.

In the standard approaches the first-order perturbed wave functions are expanded
into a set of doubly substituted Slater determinants (with respect to the HF determinant)
and the flexibility of this expansion is severely limited by the number of available HF
orbitals, i.e., the dimension of the original basis set employed in the restricted SCF HF
calculations. Recent many-body perturbation calculations of the second-order correiation
energy by Bartlett and Silver [9] clearly demonstrate that the convergence of this expansion
is quite slow. On the other hand, it is known that the second-order perturbed energy
problem can be given a variation formulation [11]. Therefore, the first-order perturbed
wave function can be chosen in a far more general way. Moreover, the variation-perturba-
tion technique provides separate equations for.the perturbation corrections to each spin-
-coupled HF pair of electrons [12]. The resulting first-order perturbed pair equations
are most efficiently solved by expanding the first-order perturbed pair functions into
a set of basis functions with explicit dependence on the interelectronic distance r, , [6, 13, 14].

Recently a considerable attention has been given to the so-called Gaussian geminals
{GG), i.e., two-electron functions with explicit dependence on r,, in the form of the
Gaussian-type correlation factor, exp (— fr3,). The atomic and molecular integrals involving
GG’s are tractable [15] and much easier than the integrals with other explicitly correlated
functions [13, 16]. Moreover, as shown by King [17], the Gaussian pair functions form
a complete set. The efficiency of the GG expausion for the first-order perturbed pair
functions was demonstrated in atomic [6] and molecular [10] calculations. It was shown
[6, 10] that fairly accurate first-order pair functions and second-order pair energies can
be obtained using relatively short GG expansions. However, a rather extensive optimization
of .all non-linear parameters entering the GG’s was found necessary.
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The present paper is concerned with the problem of efficiency of the shortest possible
GG expansion for the first-order pair functions, i.e., the expansion involving a single
GG for each pair. Such a basis, hereafter called the minimal GG set, if properly optimized,
should still provide a considerable portion of the second-order correlation energy. This
feature of the minimal GG bases was already confirmed by Pan and King [6] in the case
of atoms and the aim of the present paper is to study the usefulness of the minimal GG
sets in molecular calculations.

It is worth attention that the idea of the minimal GG set to some extent resembles
the concept of the minimal atomic bases in the SCF HF calculations. These bases contribut-
ed a lot to our understanding of the orbital model and its accuracy, though the correspond-
ing SCF energies were usually rather poor. Some similar features can be expected for
the minimal GG bases as regards the intra-pair correlation effects.

A brief description of the theory behind the calculations reported in this paper is
given in the next Section. The method of optimization of the GG non-linear parameters,
which takes advantage of relatively poor SCF reference functions according to the com-
putational scheme described elsewhere [18], is reviewed in Section 3. The final results
for LiH, BH and FH are discussed in the subsequent Section. All the SCF orbitals used
in the present calculations were obtained by expanding them into a set of completely
optimized floating spherical Gaussian orbitals (FSGO). Since these orbitals can be used
for a number of other purposes, the corresponding optimized FSGO basis sets were
separately presented in the Appendix.

2. Second-order correlation energy functional and the first-order pair equations

Let us assume for the moment that the Hartree-Fock solution for a given 2n-electron
system is available. Then, the set of # lowest energy orbitals {v,, ..., v,} is used to build
the HF Slater determinant @°. Since the orbitals v; are the eigenfunctions of the one-
-electron HF operator A,

W (kwik) = o (k), (1)

where ej* denotes the HF orbital energy, the determinant ¢° represents the eigensolution
for the so-called many-electron HF Hamiltonian HYF,

H™g° — E°¢° ' ®))
and the HF energy E™ is defined by
FHF = (¢°|H|@° = E°+E", 3
where H is the total non-relativistic Hamiltonian of a given system,
2n
H™ = Y p"(k), “
k=1
and
n
=275 &F )
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This standard material is repeated here for establishing the notation used throughout
this paper and more details can be found for instance in Ref. [19].

Given the HF &° and the corresponding HF Hamiltonian one can set up the following
perturbation problem

H = H+H!, (6)
where H ° is the HF Hamiltonian H " and the perturbation H* representing the correlation
effects [19] is given by

H' = H—H" = H-H°. )

The Rayleigh-Schroedinger perturbation theory as used by Sinanoglu [4] results in the
first-order perturbation equation

(HO~EO)" = —(H'—E")0°, ®)
where the first-order perturbed wave function ®! can be written’ [20] as a sum of antisym-
metrized products of strongly orthogonal pair functions D;; (spin-geminals) and the
remaining occupied HF spin-orbitals #;,. In this way Eq. (8) can be split into a finite
set of two-electron equations [6, 19]

1
Np
for each pair function corresponding to a given pair of occupied HF spin-orbitals. Q denotes
the so-called strong orthogonality projector

0 = q(1)q(2), (10)

Q) +RT Q@)= T~ efN)ii(1, 2) = ~ —= QL= Py,)ri; 5(1)5,2) ®)

where

a0 = 1= 3 (), (y
and P,, is the permutation operator for particles 1 and 2. The strong orthogonality con-
dition imposed by the presence of Q takes into account that only the double substitutions
with respect to @° can contribute to . As far as ¢° is the exact HF solution the presence
of O in Eq. (9) does not represent any additional approximation.

Eq. (9) is the Euler equation for the second-order pair energy functional Jug[%;;] [6]

Juel0i5] = <Bi(L, A1)+ A" (2) — & — e?F[Qﬁij(i; 2)
+/2 Re (i(1, 2IQU = Pi)ri 55,2, (12)

where the subscript HF at the functional symbol indicates that Jyg[5;;] is defined with
respect to the exact HF solution of the zeroth-order problem. The minimum value of
this functional corresponds to the second-order pair energy e;r with respect to the HF
zeroth-order approximation

ey < Jupldy]- (13)
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The separate pair energies sum up to the total second-order correlation energy Eje

Efp =) e (14)
i<j
which generally represents the main portion of the total correlation energy in closed-
-shell systems. '

" The variational formulation of the second-order energy problem permits a wide
class of functions which can be used as variational approximations to #;;. Physically, the
first-order pair functions should effectively create a Coulomb hole for each HF pair
7/(1)5,(2) and therefore, introducing an explicit r,,-dependence into (1, 2) appears to
be highly desirable. A customary procedure is to expand the first-order pair functions
into a set of explicitly correlated functions, say {g,(1, 2; «t,)} with some intrinsic variation
parameters comprising a vector a,. Thus, one can write for each component of definite

multiplicity

7,(1,2) = v;;(1, 2)6(1, 2), (15)
and
M
v;(1,2) = kZ1 Aijegi(1, 25 ), (16)

where @(1, 2) is the appropriate spin function and v;;(1, 2) represents the space part of
a given first-order correction #;,(1, 2). 4;;, are the linear variation parameters and M
denotes the dimension of the set {g,}. Provided the intrinsic variation parameters o,
are completely optimized, the second-order energies for a chosen set {gy, ..., gy} will
depend only on its size, i.e.,

& = e (M). amn

If the set {g,} is composed of the so-called Gaussian geminals (GG), i.e., products of
orbital functions multiplied by the Gaussian correlation factor, then usually a relatively
small number of terms in (16) is sufficient for quite high accuracy of the computed second-
-order pair energies [6, 10]. It is also worth attention that the number of different first-
-order pair functions can be significantly reduced due to spin and space symmetry of
a given many-electron system.

© The formulation of the variation-perturbation scheme outlined in this Section is
completely valid as far as (i) the HF ¢° built of 27 lowest energy spmorbltals corresponds
to the lowest total energy in this approximation, and (i) the HF equation (1) is exactly
solved for the orbitals used in @°. Usually the first condition is satisfied even for approxi-
mate HF orbitals [21] However, the second condition is merely an assumption. The orbitals
available in practice by no means satisfy Eq. (1), since they correspond to some finite
basis set SCF approximations.to the exact HF solutions. The study of Pan and King
shows, however, that the so-called near-HF orbitals, i.e., the SCF solutions obtained with
large basis sets, can be safely used in place of the HF orbitals [6]. The errors introduced -
by this replacement do not seem to be very important for the second-order pair energies.
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However, the calculations with near-HF orbitals and the GG expansions, accompanied
by a full optimization of the parameters entering the GG set, are tremendously time
consuming. Most of the computer time is apparently spent on the optimization of the
non-linear parameters of a given GG set. The final determination of the linear variation
parameters 4;;, for the optimized GG set is relatively fast and can be performed even
for very accurate near-HF functions involving large orbital bases. It was therefore proposed
that the GG basis set optimization is carried out with rather crude SCF wave functions [18}
and only the final step leading to the second-order pair energies is repeated with near-HF
orbitals. However, using crude SCF reference functions for the GG basis set optimization,
requires a reconsideration of the whole procedure defined for the HF @°,

3. Optimization od the GG bases with crude SCF reference orbitals

3.1. A summary of the method
The canonical SCF orbitals {uy, ..., u,} represented by the expansion into a finite
set of IV selected one-electron functions y; and used to build the approximate HF SCF
Slater determinant ¥° will not satisfy Eq. (1). Thus, in order to develop a perturbation
treatment of the correlation effects one has to define some appropriate zeroth-order un-
perturbed Hamiltonian A5 which has ¥° as its eigenfunction. The Hamiltonian satisfying
this condition, i.e.,
HFg0 = Oy 18

is conveniently represented by a sum of one-electron SCF Hamiltonians h*°F
2n
ﬁSCF = Z il_SCF(k), (19)
k=1

which in turn should have the SCF orbitals as their exact eigenfunctions
R (lyuy(k) = € Fuy(k). (20)

For a given ordinary SCF Hamiltonian HSCF
BF(1) = ho()+ Y. § ui(2) 2= Pyo)rizui2)dv,, (21).
i=1

where £,(1) denotes the so-called bare-nucleus Hamiltonian, there is an infinite number
of Hamiltonians #5°F defined by the requirement that Eq. (20) is valid in the whole
Hilbert space [22, 23]. The choice of #5F in the so-called projected form of A°F

"_ISCF(k) . pSCF(k)hSCF(k)pSCF(k) + qSCF(k)hSCF(k)qSCF(k), (22)
where
PR = 3 1> b @3
and

g*F(k) = 1= p*(k) (24
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was recommended in several recent papers [9; 22-24]. With 4°F as- given by Eq. (22)
the eigenvalue problem (20) becomes an identity. Moreover, the projected form of the
SCF Hamiltonian (20) in the limit of the HF solution becomes the spectral resolution

of AHF.
According to these definitions the eigenvalue E° is exactly equal to the sum of the

SCF orbital energies
E°=2Y &%, (25)

and Eq. (19) defines the following partition

H=H'+H (26)
of the total Hamiltonian H into the unperturbed part H° = H and the perturbation H!.
In comparison with Eqs. (6) and (7) H* is responsible for both the trué correlation effects
and the effects of the inaccuracy of the SCF solution [24] with respect to the HF result.
Since we are interested rather in pure correlation effects than in the improvement of the

SCF orbitals, the separation of the corresponding contributions to the perturbed energies
is desirable. There is no problem with the first-order perturbed energy E*, which is given by

E' = CYOH' Y @7

and contributes to the SCF energy ESF

ESF = E°+E. (28)

For the second-order energies the separation of the correlation effects can be done to
some extent by the appropriate selection of the first-order pair functions u;;(1, 2). If these
are made strongly orthogonal to the occupied orbitals, i.e., if

PP (Qu(1,2) = 0, (29)

then the first-order perturbed wave function ¥*! will involve only double substitutions

with respect to ¥°.
The partition (26) allows for the legitimate use of the variation-perturbation approach,

since the zeroth-order problem for H*F is already solved. Thus, the second-order energy
variation principle leads to the Hylleraas-type functional [25]
Jscr[P'] = <PYH-E°|¥" ) +2 Re (W' [H' - E'|?P°) (30)

and its minimum corresponds to the second-order energy Eocr With respect to a given
SCF reference function ¥°. Introducing strongly orthogonal spin-geminals i;/(1, 2) in the
same way as for the HF approach one can show that the functional (30) is split into
a finite set of independent pair functionals

J SCF[ﬁij] = (il j(ls 2)IESCF(1) + Escp(z) - e;SCF - e§CF|QSCF(1)‘ZSCF(2)Et j(l > 2)>
+v/2 Re <ii;;(1, 2)1¢°F(1)g*F(2) (1 — Py o)ri; la(1)ii2)) @31
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with the second-order pair energies ef;" corresponding to their minimum values. These
pair energies will depend on both the size N of the basis set of one-electron functions
used in the SCF calculations and the accuracy of the minimization of the functionals (31).
If the pair functions are expanded in terms of some finite M-dimensional set of geminals,
then
eyt = SCF(N M), (32)
and e}y (N, M) will approach e}y (M) for sufficiently large values of N. In comparison
with the ordinary approaches replacmg KF in the functional (31) by #°F, the present
formulation does not rely on a rather questionable assumption that the validity of the
ordinary SCF equation
REuik) = & Fuy(k) (33)

can be continued beyond the selected subspace of N one-electron basis functions.

For poor SCF reference functions, i.e., for small values of N, ;" will represent
obviously a poor approximation to e” However, for relatively well optimized SCF
wave functions the HF potential entering #°F should properly reflect the most important
features of the exact one. It was therefore proposed to use the functionals (31) built with
rather poor SCF functions for the purpose of optimization of a given geminal basis set [18].

The optlmlzatlon of non-linear parameters entering the geminals is obviously the
most time-consuming process and its timing heavily depends on the size of the set of
one-electron functions used for the calculation of the SCF orbitals. The method based
on the functionals (31) was shown to provide quite reliable optimized GG bases in atomic
and -molecular calculations [10, 18]. According to the proposed procedure [18] the optimi-
zation of the GG bases represents the first step in the calculation of e}j (M).

3.2. The SCF wave functions for the GG basis set optimization for LiH,
BH and FH

‘As already pointed out the SCF reference orbitals used to construct the functionals (31)
should satisfy the following conditions: (f) they should lead to one-particle density matrices
relatively close to those corresponding to the near-HF functions, (i) the number of one-’
-electron basis functions used for their representation should be kept as small as pos'sible;"
It is therefore convenient to use such one-electron bases which involve several easy to
optimize non-linear parameters. Moreover, since the correlation effects will be accounted
for by the Gaussian-type geminals, it is also convenient to use the Gaussian-type functions
in the one-electron basis sets. All the above conditions are perhaps at best satisfied by the
so-called floating spherical Gaus51an orbitals (FSGO) [26] of the form

= exp (—plr—Ry?), e

with' both the ‘orbital ‘exponent g, and ‘the origin position R, optimized with respect-to-
the total energy of a given system. For a general. molecular system each FSGO introduces 4:

lndependent varlatlonal parameters. Therefore, the expansmn

Z Cuali (35)
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is expected to give rather. reliable molecular orbitals for a small number of optimized.
FSGOs. It is also worth attention that using the FSGO’s results in much simpler many-.
-electron integrals than in the case of the so-called cartesian Gaussians [27]. Howevet,.
some difficulties occur when one tries to represent the atomic p-type functlons usmg solely
the FSGO’s. As shown by Whitten [28], in order to generate the orbital of e. g P, symmetry,
it is enough to take the following combination

(1=Px) exp (—plr—Rif?), N 1)
where Py changes the sign of the x-component in the origin position vector R;: However :
for this orbital to have the properties of the p, function the distance between X; and
— X should be infinitesimally small [28]. This condition may affect the numerical stability
of the SCF energy optimization with respect to the origin positions .of the FSGO’s con-
tributing to z#-type orbitals.

The initial step in the present study was to determine suitable optimized FSGO bases
for the representation of the SCF functions used during the GG optimization with: the
functionals (31). For the LiH molecule the optimized FSGO set containing 5 functions
was found to give the SCF energy E5F = —7.852243 a.u.! In the case of the BH molecule
two bases containing 5 and 6 FSGO’s were selected for the SCF energy optimization.
The corresponding completely optimized FSGO’s led to the energy values of —24,281764
a.u. and —24.822968 a.u., respectively. Since a rather small enlargement of the basis
set size provides a considerable gain in the SCF energy, only the 6 FSGO set was utilized
in the GG optimization process.

For the FH molecule different optimized FSGO bases were used for the optimization
of go-type geminals and for those representing the correlation effects in on- and zr-type
pairs. In the first case the optimized FSGO set comprising altogether 9 FSGO’s (5 of
o-type symmetry and 4 leading to n-type molecular orbitals) was used and led to

o E*F = —95.008089 a.u. A poorer representation of o-type molecular orbitals was’
allowed in the case of the GG optimization for o- and z-pairs. For these paits'a separately’
optimized 7 FSGO basis set was employed (3 FSGO’s of o-type symmetry and 4 FSGO’sH
contributing to 7-type molecular orbitals) with the SCF energy E" = —84.656850 a.u.
All the FSGO bases employed at the SCF level of our calculations for both the GG optimi-
zation step and for the final calculation of the second-order pair energles are glven a more’
detailed description in the Appendix. '

As can be seen from the reported ESF values the FSGO bases utilized fo’r_the determi-
nation of optimized GG’s according to the method described in Section 3.1, are energétically’
quite far from the estimated HF limits (—7.9873 a.u. for LiH, -25.1314 a.u. for BH,
and —100.0703 a.u. for FH [29]). Thus, one may wonder if they are suitable even for such
purposes as the GG basis set optimization. It follows from our previous calculations [10, 18]
that the optimization process can be successfully accomplished using the SCF functions
of low energetic quality, provided the appropriate formulation of the variation scheme [18],

1 All molecular energies reported in this paper represent the sum of the total electronic. energy, as.
given by Egs. (3) and (28), and the nuclear ;‘epulsion contribution calculated for the pertinent experimental
equilibrium distances (RLig = 3.015 a.u., Rpu = 2.336 axu., Rpyg = 1.7238 a.u.).
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is-employed. Moreover, the whole method anticipates a rather rough, inexpensive optimi-
zation of GG’s followed by the variation calculation of the pair energies with much bettcr
SCF - functions and already fixed GG basis set. .

3.3. Optimization of the minimal GG basis sets for LiH, BH and FH

As discussed by Pan and King [6] the number of independent second-order pair
energy functionals of the form (31) can be considerably reduced if the spin-symmetry
of spin-geminals ii;; is taken into account. Let us denote by Oy, a normalized spin
function for two electrons. Then for a pair of spinorbitals i;, ii; given by

=uya and @; = uq 37

where ‘o denotes the one-electron spin furction, the spin-geminal &;; can be written as
Uy = 3ui'j’@1,1 » (38)

leading to the triplet-type spinless geminal 3u;; and the corresponding second-order

pair ‘energy functional. In a similar way one obtains

Uy; = 1ui'i'@o,o (39
for,

o i =uo and ;= uyp (40)
and

1
u; = :/‘Z Cupj©0,0+ 41 O1,0) 41
1f both the space and the spin part of a given pair of spinorbitals is different. The space
*part of spm-gemmals will be therefore either symmetric with respect to the permutation
operator P,, (singlet-type spinless geminals) or antisymmetric (triplet-type spinless gem-
1nals) It means that the basis set {g;} has to be appropriately projected before it is used
for the expansion of spinless geminals ‘u;; and 3u;;.
. A further reduction of the number of different spinless geminals can be achieved due
to a poss1ble space symmetry of two-electron functions. This in turn is determined by the
space symmetry of the product of spmless one-electron functions entering the r.h.s. of
the corresponding pair equation. If the fundamental set of Gaussian geminals is assumed
tohave the form

. wi(1; 2) = exp (—amrf;«ik"azkrgak;'askrfz)a (42)
v%skh,eré"
T%Ak - lrl—Ak‘Z, 7'§Bk = |V2“‘Bk|2 43)

fhe’ épin and space symmetry adapted functions g, can be generated by using the appropriate
projectors O, i.e.,

g(1,2) = Ow(L, 2). (44)
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‘When constructing the projection cperator O for a given pair it is covenient to interpret (42)
as the product of the pertinent orbital functions and the Gaussian correlation factor

wi(1, 2) = f1(D)f2:(2) exp (= ask"iz)‘ (45)

It follows, therefore, that for (45) to contribute to the correlation correction for a pair
u(Du;(2), the product of orbital factors in (45) must have the symmetry properties as
u1)uy(2). The analysis of the partial wave contributions to the first-order pair functions
for the sp and pp pairs in Ne [30, 31] leads to the conclusion that one can safely assume
that the orbital factors in (44) are of the same symmetry as the initial SCF orbitals. Accord-

TABLE 1

Projection operators O used to generate the permutation and space symmetry adapted strongly orthogonal
geminals according to Eq. (44) and constraints imposed on the GG non-linear parameters

. . Projection operator * X
Orbital pair 0 Constrained parameters P
Yoo) Q1+ P12)
Y(00) O(1+Py2) } Ay=Ay=By=By=0
3(00) Q1 —Pyz)
|

Yom) © Q(1+P1,)(1—Pyp)
3(om) © | O(1 - Py,)(1—Pyp) Ax=Ay=By,=0
l(nn)d oa +P12)(1—Px4)(1—Pxp) Ay = By =0
Han') © Q1+ P2)(1 — Py a)(1—Pyp) Ay=Bx=0
3w’y © Q1 —P13)(1— Py (1 —‘PyB) ay, az, Ax, Byy Az, Bz

2 O denotes the strong orthogonality projector for a given SCF reference function, Py, permutes
electrons 1 and 2, P,c changes the sign of the u-th component of the vector C.

b For definitions of symbols see Eqs. (42) and (43). The subsciipt & in these equations was dropped
as immaterial for a single GG.

¢ The Q operator and constraints defined for n,, orbital. The appropriate entries for omy pairs follow
from symmetry considerations.

4 Defined for 7,5, pair. For 7ymy pair x should be replaced everywhere by y and vice versa.

¢ For niw’ pairs only the correlation exponent a; was optimized. See Text for details.

ing to this argument the appropriate projection operators for ¢¢, an, nr, and =z’ pairs
were constructed and they are listed in Table I.

Each function of the form (42) in a general case will introduce as many as 9 variable
parameters, i.e., two orbital-like exponents ay; and ay, the correlation exponent as,
and the components of A, = (4, 4,4, A,) and B, = (B, By, B,). The symmetry
of linear molecules considered in this paper introduces some constraints as regards the
components of 4, and B,. The constrained parameters are listed in the last column of
Table I. A comment on additional constraints imposed on the geminal parameters for
the '(nn’) and 3(nn’) pairs is necessary. In fact for these two pairs only the correlation
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exponent was varied. The orbital factors were assumed to be represented by the same
FSGO’s as those leading to 1w and 1z’ SCF orbitals of the FH molecule within the minimal
FSGO basis set approximation (see Appendix). This additional assumption as regards
the flexibility of the corresponding geminals was introduced for purely computational
reasons. It can be justified by the fact that the product of pertinent SCF orbitals multiplied
by a function explicitly dependent on r,, provides a reasonable approximation for the
corresponding first-order pair function [13].

Since within the minimal GG basis set assumption each pair function is represented
by a single GG we can actually drop the subscript & at g, and w;,. Each GG will be there-
fore solely defined by the orbital pair whose second-order correlation energy is computed.
The unconstrained parameters of each GG were optimized by minimizing the appropriate
functionals for spinless pair functions. The minimization was performed using a modified
Powell conjugate direction search technique due to Pan and King [6]. All the second-
-order energy functionals were set up using poor SCF functions described in Section 3.2
and the projected one-electron SCF operators of Eq. (22). Though the individual many-
-electron integrals contributing to the second-order energy functionals within the present
approach are fairly simple [15] their number would make the GG basis set optimization
impossible with the SCF functions expanded in larger atomic bases. Thus, at this step
the primary goal was to obtain the minimal GG sets whose no-linear parameters reflect
the main features of the electron density distribution in a given molecule. As indicated
in our previous papers [10, 18] the GG parameters determined in this way are rather close
to the parameters obtained with the SCF functions of much higher accuracy.

Among the computational aspects of the present calculations one should notice that
computing the value of the second-order pair energy functional involves a variety of one-,
two-, three-, and four-electron integrals. All of them can be reduced to a set of fundamental
integrals by using the properties of Gaussian functions [15]. A convenient graphical scheme
for the appropriate reductions has recently been proposed [32] and was extensively
employed in the present paper.

When optimizing the non-linear GG parameters one faces all the problems characteristic
for the non-linear optimization theories. As usually, also in the present case there is no way
to prove that the final GG parameters correspond to the absolute minima of the second-
-order pair energy functionals. Since the functional value, though it refers to a rather
poor SCF wave function, should be relatively close to the corresponding second-order pair
energy, the false minima can be easily recognized. Also the choice of the initial values
of the optimized parameters can be guided to some extent by the physical interpretation
of the correlation effects introduced by a single GG for a given pair. The orbital factors
in w(l, 2) should resemble the shape of the SCF orbitals comprising a given pair and this
allows for some preselection of a;, @, and the components of A4 and B. The initial value
of the parameter a; can be guessed by discussing its role in the creation of the Coulomb
Hole for a given pair. This parameter will be large for singlet-type pairs since it must account
for the interelectronic Coulomb repulsion at short distances. On the other hand, for
triplet-type pairs the short range repulsion is already partly taken into account by the Puli
principle and a relatively small value of a; will account for the long range effects.
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The otimized values of unconstrained GG parameters for LiH, BH and FH are
shown in Table II, Table 111, and Table IV, respectively. In all cases the z-axis of the coordi-
nate system was assumed to coincide with the molecule axis and the results refer to the
experimental equilibrium bond distances. As shown by the data of these Tables, the optimi-
zed parameters closely follow the general rules described above. However, these rules
anticipated that the SCF orbitals are fairly well localized. This assumption is usually satisfied
for diatomic hydrides studied in this paper, though the canonical SCF orbitals are used.

TABLE II

Minimal GG basis set for the LiH molecule (R ;i = 3.015 a.u.) optimized with the 5 FSGO SCF reference

Orbital
pair

(1olo)
(1020)
3(1620)
}(2020)

ay

3.55208
6.42548
1.10743
0.15485

function. All entries in a.u.

Optimized GG non-linear parameters?

eistF(S, 1) b

l az l as l A, I z
| 1.76234 3.15663 ‘ —0.00633 | 0.00840 -0.02706
3.45426 | 2.40611 —0.00964 —0.01887 —0.00066
0.09553 0.45956 ‘ 0.03711 | 3.01203 —0.00025
| 0.31485 | 0.29614 2.70740 | 2.88076 —1.02178
Total © —0.05025

# The molecule lies on the z axis with the heavy atom at the origin. Parameters defined according
to Egs. (42) and (43) and Table 1.
b The calculated minimum value of the functional (31). See also Eq. (32).
© The total second-order energy calculated according to. Egs. (46)-(48) using the e,-SjCF (5, 1) values.

TABLE 11

Minimal GG basis set for the BH molecule (Rpy = 2.336 a.u.) optimized with the 6 ESGO SCF reference

‘Orbital
pair

(1o10)
(le20)
3(1020)
*(1630)
3(1030)
(2620)
Y20630)
3(2030)
1(3030)

1636) ¢
3(1630) ¢
1(3¢30) ¢

function, All entries in a.u.

Optimized GG non-linear parameters #

| -

|

ay as

‘ |
1005464 | 471934 | 970687
10.99560 | 19.34778 7.69913
3.63329 0.03721 ‘ 1.36506
| 1895253 | 1126894 | 779798
3.63436 0.30517 1.34854
0.30446 011117 |  0.40709
0.62251 0.21234 ‘ 0.53066
0.15483 024199 | 0.25400
0.27240 0.11531 | 0.24791
1.96974 043584 011055
3.58312 043862 | 0.30000
0.70580 034147 | 025375

% b, ¢ See Footnotes to Table II.
9 Local minimum. See Text.

eSC°F6, D

4 | o
0.00075 ! 0.00009 | —0.02847
—0.00163 | —0.00266 | —0.00116
0.00997 345940 | —0.00040
0.02664 ‘ —0.00878 | —0.00045
—~0.01109 | —1.34189 | —0.00023
‘ 115489 | 070767 | —0.01960
- 2.11942 207252 | —0.00966
| 144955 | 211775 | —0.00212
| —0.63789 | ~1.18789 | —0.01833
| Total® | -—0.08592
[ —0.08473 1.40067 | —0.00003
0.19318 3.15353 | —0.00002
i 2.16246 243882 | —0.00472
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The only substantial exception is provided by 3¢ orbital of BH. In this case the canonical
SCF orbital is mainly localized in two distinct parts of the molecule — one representing
the lone pair and the other contributing to the B-H o bond. This delocalization of 3¢
SCF orbital has led to two distinct local minima of the second-order pair energy functionals
for pairs involving 3¢ orbital. The GG’s for these pairs shown in Table III always correspond
to a deeper minimum and mostly represent the correlation effects involving the lone pair
region.

The relation between the localized character of the correlation effects accounted for
by a single GG and the form of the SCF orbitals leads to the conclusion that for larger
molecules one should use the localized orbitals rather than the canonical ones. Since the
degree of delocalization of 30 SCF orbital in BH is not too high using the GG’s
which mainly correlate the lone pair region does not seriously affect the computed second-
-order pair energies. The other minimum of the second-order pair energy functional with
the GG correlating the B-H bond region is much higher than that for the GG contrib-
uting to the lone pair correlation effects, e.g.,” —0.00472 a.u. and —0.01833 a.u. for
(30)? pair.

In Tables II-1V also the calculated minimum values of the corresponding second-order
pair energy functionals are shown. They can be interpreted as the second-order pair energies
computed with reference to poor SCF wave functions, ie., € (V, 1) of Eq. (32) with
relatively small values of N. In spite of the crudeness of the SCF reference functions used
for the optimization of the GG’s, the second orderenergies éfj-CF(N, 1) are quite reasonable,
though they may considerably differ from e} (1) of Eq. (17).

Once the optimization of the minimal GG bases is completed one can proceed to
the final step of the computational procedure proposed in Ref. [18], i.e., the calculation
of the second-order pair energies with fixed non-linear parameters of the GG basis set but
employing more accurate, near-HF one-electron SCF functiomns.

4. Second-order pair energies of LiH, BH ond FH. Results and discussion

4.1. The SCF wave functions

The SCF orbitals employed for the calculation of the final values of the second-
-order pair energies differ from those described in Section 3.2 only by the dimension
N of the corresponding FSGO basis set. The optimized FSGO parameters are shown
in the Appendix.

For the LiH molecule the 13 FSGO set of Karunakaran and Christoffersen [33]
was further optimized leading finally to the total molecular SCF energy of —179853 a.u.
which is fairly close to the best SCF result (—7.9873 a.u. [29]). Only a slightly worse
set composed of 15 FSGO’s was used for the BH molecule. A complete optimization
of all parameters lead to the total molecular SCF energy of —25.1132 a.u.,, again
quite close to the accurate SCF value of —25.1314 a.u. [29]. However, in the case
of the FH molecule reaching the same level of accuracy of the SCF energy was found
impossible with the FSGO bases of a reasonable size. Because of the computer time limita-
tions the final values of the second-order pair energies for FH were computed using much



89

shorter than necessary FSGO expansions of the SCF orbitals. The optimized basis set
was composed of 22 FSGO’s (14 FSGO’s for ¢ orbitals and 8 FSGO’s for n orbitals).
The calculated total molecular SCF energy (—99.3538 a.u.) was in this case considerably
higher than the accurate value (—100.0703 a.u. [29]). This rather large energy difference
is mainly due to relatively poor representation of the 1o orbital of FH in the region close
to the fluorine nucleus. However, this deficiency appears to be of lesser importance for the
calculated pair energies. Because of a full optimization of all FSGO’s the higher occupied
orbitals seem to be given a much better representation. As can be seen from the data
presented in the Appendix the FSGO’s with relatively low exponents predominate in the
22 FSGO set.

4.2, Second-order pair energies. A comparison with the MBPT results

Using the minimal GG basis sets determined in Section 3.3 the final values of the
second-order pair energies have been computed. At this step the SCF functions were
assumed to be sufficiently close to the HF ones and the non-projected functional (12) or
its-counterparts for spinless pair functions were employed. The assumption that the SCF
wave functions described in Section 4.1 are sufficiently close to the HF ones seems to be
fairly well justified in the case of LiH and BH. For these two molecules one can rather
safely use Eq. (33) as an equivalent of the exact Eq. (20). However, for the FH molecule
replacing Eq. (20) by Eq. (33) is obviously questionable and to obtain the SCF wave
function of the appropriate accuracy would require much larger than 22 FSGO basis set.
Thus, in comparison with Lil{ and BH our results for the second-order pair energies of
FH are definitely of poorer accuracy. In spite of this they seem to provide an interesting
material concerning the efficiency of the GG bases for the description of the correlation
effects in no, nw, and nn’ pairs.

Since the non-linear parametes of the GG’s for each pair are already fixed by the
calculations of Section 3.3 the minimization of the appropriate second-order energy
functionals leading to the final values for the second-order pair energies in performed
with respect to a single linear parameter 4;;, = 4,; (cf. Eq. (16)). Though formally trivial
this final step appears to be quite time-consuming since one needs a number of many-
-electron integrals. The number of these integrals increases like ¥ with the FSGO basis
set dimension N. The N“-dependence clearly shows why one should avoid the GG basis
set optimization with reference to rather accurate SCF functions.

The computed second-order pair energies for singlet (i), 1(if) and triplet 3(jf) pairs,
where i and j denote molecular orbitals, are shown in Tables V-VII. In the case of i # j
the total second-order pair energy is given by

e = e+ 3esqy, (46)
while for i =j
i = €10, 47)

These total second-order pair energies e, ¢;; sum up to the total second-order energy E2,

= g<; e (48)
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TABLE V
Second-order perturbation calculations for the LiH molecule (Rpig = 3.015 a.u.). All energies in-a.u.
R ) Second-order pair energies First-order pair function?®
Orbital pair - o
G This Referenfe MBPT results °
work 2 I I I [ Aii® Suijluijy
(lol0) —0.02674 —0.01893 —0.03338 —0.03563 —0.174392 0.001578
1(1020) —0.00054 —0.00064 —0.00085 —0.00118 —0.053166 0.000025
3(1620) —0.00025 —0.00018 —0.00021 —0.00038 0.006969 0.000032
1(2020) —0.02093 -0.01508 | —0.02403 —0.02745 | —0.012009 0.008057
Total ¢ —0.04896 | -—0.03518 —0.05888 J —0.06539 |

* Calculated using the minimal GG basis set of Table II and the 13 FSGO SCF reference function.
b MBPT results of Bartlett and Silver [9] obtained with 15 STO (I), 25 STO (II) and 46 STO (III)
basis set.

® 4;j is the linear variation parameter of Eq. (16) for a single GG representation of the spinless pair
function u;;.
4 Calculated according to Egs. (46)—(48).
TABLE VI

Second-order perturbation calculations for the BH molecule (Rpy = 2.336 a.u.). All energies in a.u.

| Second-order pair energie: . . )
b gles | First-order pair function?

Orblt(e;.l) e This ) Reference MBPT results ® L S E—
work ® 1 | I ’ I Ay ° Suijlugzy
Y1ol0) ‘ —0.02809 —0.01778 —0.03201 | —0.03327 —0.507581 0.000438
(1620) —0.00103 -0.00096 —0.00167 —0.00185 ! 0.231906 | 0.000016
3(1620) -0.00035 —0.00016 —0.00039 —0.00047 —0.019393 | 0.000017
1(1630) —~0.00060 -0.00072 | —0.00134 —0.00172 -0.176200 0.000009
*}(1030) —0.00035 —0.00032 ~—0.00052 —0.00068 0.023363 | 0.000017
1(2620) —0.02000 —0.00951 —0.01810 —0.02328 —0.011528 0.006974
1(2030) —0.00707 —0.00599 —0.01285 -0.01586 —0.012872 0.001780
3(2030) —0.00169 —0.00111 —-0.00153 —0.00240 | —0.014062 0.000637
1(3030) —0.01881 —0.01003 —0.01648 ‘ —0.02437 ‘ —0.011575 0.009941
Total ¢ ~008277 | —0.04978 | —008978 | —0.11103

2 Calculated using the minimal GG basis set of Table III and the 15 FSGO SCF reference function.

b MBPT results of Bartlett and Silver [9] obtained with 15 STO (@), 22 STO (II) and 46 STO (III)
basis set.

© 9 See the corresponding Footnotes to Table V.

where the summation extends over all different pairs of molecular orbitals of a given
molecule.

Recently the same series of molecules, i.e., LiH, BH and FH, was extensively studied
within the many-body perturbation theory (MBPT) approach by Bartlett and Silver [9]
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TABLE VII

Second-order perturbation calculations for the FH molecule (Rpg = 1.728 a.u.). All energies in a.u.

. - Second-o'rder pair energies | Fisrt-order pair function
Orb‘“ﬂ pair . Reference MBPT results ® —
@ This : . )
work ? I o I Aij luijluizy
. | -

(1ol0) —0.02854 —0.00190 —0.02911 —0.02938 —1.614282 0.000142
1(1620) —0.00212 —0.00052 —0.00246 —0.00260 1.185540 0.000010
3(1620) —0.00042 | —0.00002 —0.00038 —0.00040 —0.060028 0.000005
1(1630) | - 0.00039 -0.00021 —0.00049 —0.00098 —0.131786 0.000005
3(1030) | - 0.00029 —0.00021 —0.00065 —0.00088 0.245752 0.000004
1(2620) | —0.01040 —0.00706 -0.00753 | ~0.00999 —0.044582 0.000850
1(2630) —0.00578 —0.00947 —0.01212 —0.01376 -0.026420 0.000538
3(2630) —0,00132 -0.00225 —0.00246 | —0.00262 —0.051087 0.000140
iGo3) | ~001010 | —00209 | 002312 | ~—002512 | —0.029522 | 0.001682
Total oo ¢ —0.06342 —0.04753 —0.08530 —0.09353

1(1o1m) ‘ —0,00087 —0.00009 —0.00015 - 0.00108 0.476503 0.000013
3(1olm) —0.00059 —0.00023 —0.00067 —0.00112 1.614978 0.000008
1(2017) | -0.01377 —0.00866 —0.00898 | —0.01239 | —39.730760 0.001057
3(201m) | —0.00143 —0.00210 —0.00224 —0.00265 0.109661 0.000143
1(301m) | —0.00351 —0.00830 —0.00862 —0.01296 —0.062193 0.000383
3(3oln) —0.00216 —0.00676 —0.00682 | -—0.00884 —0.056450 0.000282
Total on ¢ —-0.06138 —0.08864 —0.09388 i -0.12852 l

11xln) —0.01402 —0.01296 —0.01343 ! —0.02146 —0.184345 0.001441
1(1nlx’) —0.00797 —0.00907 —0.00922 —0.01383 —17.200286 0.000730
(1=l —0.00422 —0.00517 —0.00524 —0.00893 —5.073330 0.000512
Total iz ¢ —0.04867 -—0.05050 —0.05180 —0.08356

Total 4+ © —0.17347 —0.18667 ~0.23098 —0.30561 |

a Calculated using the minimal GG basis set of Table IV and the 22 FSGO SCF reference function.

b MBPT results of Bartlett and Silver [9] obtained with 19 STO (I), 29 STO (II) and 46 STO (III)
basis set.

¢ d See the corresponding Footnotes to Table V. The total zz contribution comprises both the 7
and 7z’ pairs.

¢ The total second-order correlation energies obtained via the direct summation of the pertinent
pair energies. The MBPT values differ insignificantly from those reported by Bartlett and Silver, possibly
due to round off errors.

and Wilson and Silver [34]. The second-order pair correlation energies reported in these
papers have been computed using for each molecule three different SCF wave functions
expanded in terms of the Slater-type orbitals (STO). The MBPT second-order pair energies
calculated without the denominator shift are exactly the same quantities as those considered
in the present paper. Both they contribute to the lowest-order correlation energy diagram
representing E;. The MBPT data of Silver et al. offer a convenient set of reference
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values for the present results. However, when comparing the results of Silver et al, with
the present ones, one should mention some significant differences between the finite basis
set MBPT approach and the variation technique employed in this paper.

In the MBPT approach the first-order perturbed wave function is represented solely
in terms of Slater determirants, which are doubly substituted with respect to the zeroth-
order HF (or SCF) determinant. Thus the flexibility of the first-order function is severely
limited by the number of available virtual orbitals and one has to use much larger bases
than those required for near-HF accuracy of the zeroth-order energy. In the present
approach one should obviously account for sufficiently accurate representation of the
zeroth-order SCF wave function. However, the virtual orbitals resulting as a by-product
of the SCF calculations are of no importance for the computed second-order pair energies.
The use of the GG bases with explicit r,,-dependence is expected to be far more efficient
than the expansion of the first-order pair functions in terms of products of available
virtual orbitals.

In Table V the second-order pair energies calculated using the minimal GG set are
compared with the results of Bartlett and Silver [9] obtained for 15, 25, and 46 STO basis
sets. It is worth attention that from the point of view of the total molecular SCF energy
of the LiH molecule even the smallest STO basis set used by these authors is better than our
optimized 13 FSGO set. On the other hand the second-order correlation energy computed
using the minimal GG basis set is considerably lower than the MBPT result for 15 STO
basis set and represents almost 75 per cent of the best value of Bartlett and Silver.

A similar conclusion can be drawn from a comparison of the second-order energy
data for the BH molecule given in Table VI. The present value of E2 is almost two times
lower than that computed by Bartlett and Silver using 15 STO basis set. At the same
time their SCF energy E°® = —25.1313 a.u. [9] provides near-HF accuracy. It is also
interesting to notice that once again the minimal GG basis set represents ca. 75 per cent
of the best E? value obtained with 46 STO set [9].

For quite obvious reasons one can hardly expect the same level of accuracy for the
second-order correlation energy calculated for the FH molecule. First of all, the SCF
functions used for the calculation of the final values of the second-order pair energies
are much poorer than those employed in the case of LiH and BH. Secondly, as already,
indicated in Section 3.3, the GG’s for *(1n1n") and *(1n1x’) pairs have not been fully optim-
ized, since in this case only the correlation exponent a; was varied. Moreover, the optimiza-
tion of the GG non-linear parameters was carried out with very crude SCF reference
functions. In spite of these additional approximations, the results shown in Table VII are
still of reasonable accuracy.

In comparison with the calculations by Bartlett and Silver [9] our E2 value for the FH
molecule is only slightly worse than their 19 STO MBPT result. On the other hand the
total molecular SCF energy corresponding to 19.STO basis set, E5F = —99.9911 a.u.,
is definitely much lower than our value for the 22 FSGO set. The inaccuracy of the present
SCF orbitals of the FH molecule appears to be mostly responsible for relatively higher E2
value, which accounts only for ca. 57 per cent of the second-order correlation energy
obtained by Bartlett and Silver with 46 STO basis functions [9].
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If the total second-order correlation energy is split into o¢, o, and #n contributions,
then according to the data of Table VII, the minimal GG basis set leads to E?(go) =
= —0,06342 a.u., E*(on) = —0.06138 a.u., and E%(nn) = —0.04867 a.u. The second-
-order correlation energy contributions following from the 46 STO MBPT calculations by
Bartlett and Silver amount to —0.09353 a.u., —0.12852 a.u., and —0.08356 a.u., respec-
tively. Thus, one can conclude that the minimal GG basis set calculations for go-type
pairs in FH are of a similar quality as for LiH and BH.

Finally, one should compare the minimal GG basis set results with the total correla-
tion energies. The estimated total correlation energy E,,,, for LiH, BH and FH amounts
to —0.083 a.u,, —0.155a.u., and —0.381 a.u., respectively [35]. Thus, the second-order
minimal GG basis set calculations are able to recover almost 60 per cent of E,,, for
LiH and BH. Even in the case of the FH molecule the present second-order result is not
much worse.

The second-order energy data of Tables V-VII are supplemented by the calculated
values of the norm of the computed first-order pair functions {u;jle;;>, which can be used
for the estimation of the unlinked cluster contributions to the third-order correlation
energy [10].

5. Summary and conclusions

The method proposed for the optimization of the GG bases [18] in variation-perturba-
tion calculations of molecular correlation energy was utilized for the determination of the
second-order correlation energy in LiH, BH and FH. The concept of the minimal GG
basis set similar to the idea of the minimal atomic orbital bases in the one-electron approx-
imation, was introduced. It was shown that the minimal GG set, if properly optimized,
can account for a substantial portion of the second-order correlation energy. If the molecular
SCF orbitals are represented in terms of FSGO’s, the many-electron integrals encountered
during the determination of the first-order perturbed pair functions can be computed
utilizing rather standard methods [15, 32, 36].

Obviously, as already indicated by the other authors [6] and also in our recent papers
[10, 18, 37] the calculation of very accurate second-order molecular pair energies would
require larger than minimal GG bases. However, the minimal bases lead to compact
and conceptually simple form of the first-order perturbed pair functions. The correlation
effects within a given pair can be easily analysed in terms of the corresponding GG param-
eters. According to the discussion in Section 3.3, the range of the correlation effects
in a given pair is in principle determined by the optimized value of the correlation ex-
ponent a;.

In spite of its crudeness the minimal GG basis set approximation recovers a consider-
able portion of the second-order correlation energy. It follows from the data of Section 4.3
that the degree of the second-order pair correlation effects accounted for by a single GG
depends on the localization of the SCF orbitals. Thus, using the minimal GG bases should
lead to even better results if the whole perturbation scheme is used within the localized
molecular orbital picture. It is also worth attention that the present method does not
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need, in contrast to the configuration interaction schemes, very large computers. Since
each pair is treated separately the core requirements are substantially reduced. The manipu-
lation with very large bases, necessary for an efficient configuration interaction calculation
is replaced by a careful optimization of relatively small number of non-linear parameters
entering a given GG. It is also important that a rather time-consuming optimization process
can be performed with reference to much cruder SCF wave functions than those employed
in the final calculation of the pair energies. In this context one should notice that the
minimum values of the projected functional (31),as shown in Tables II-IV give also
a reasonable approximation to the corresponding pair energies. Moreover, the total
second-order energies computed from (31) are lower than the final E2 values (Tables V-VII)
and therefore closer to the accurate results. Unfortunately, there is no way to prove that
this interesting regularity observed in our calculations is valid in a general case.

At least within the minimal GG basis set approximation the study of the correlation
effects appears to be possible for quite sizable molecules. The calculated first-order pair
functions, owing to their simple and compact form can be used for a number of other
purposes, €.g., for the calculation of the correlation contribution to molecular properties
[38]. Also the calculation of the third-order correlation corrections to the total energy [10]
appears to be relatively easy.

The authors are deeply indebted to Professor W. Zielenkiewicz for his kind attitude
towards this work. We would like also to acknowledge an invaluable and helpful assistance
of Dr. Z. Paszek during the calculations described in this paper. Some of the optimization
routines were kindly provided by Dr. H. F. King, Dr. L. Piela and Dr. K. Pecul.

APPENDIX

The FSGO bases proved to be very convenient in molecular calculations. However,
the efficiency of small sets of FSGO’s crucially depends on the degree of optimization of
all non-linear parameters. According to Eq. (34) each FSGO introduces in general four
non-linear parameters — the orbital exponent u; and three components X;, Y;, and Z;
of the origin position vector R;. This provides quite high flexibility of molecular orbitals (35).

A very extensive optimization of several small FSGO bases was necessary for the
present study and the determined optimized basis sets seem to be convenient also for other
molecular calculations. Moreover, the optimization of the FSGO non-linear parameters
is a rather expensive process. For these reasons we felt it worthwhile to present the whole
set of the FSGO bases utilized in this paper. »

In all calculations the XH (X = Li, B, F) molecule is assumed to lie on the z axis
of the coordinate system with the X ‘atom at the origin. The optimization of the FSGO
parameters was carried out for the corresponding experimental equilibrium X —H distances
Ryy. Because of symmetry the FSGO’s contributing to o-type molecular orbitals have
X; = Y; = 0. The FSGO’s contributing to n-type molecular orbitals in FH have been
generated according to Eq. (36) and its counterpart for 7, orbitals. Except for the 13 FSGO
basis set for the LiH molecule, the initial values for the pertinent non-linear parameters
were taken from the atomic calculations of Duijneveldt [39]. In the case of the 13 FSGO
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TABLE Al
Optimized FSGO bases for the LiH molecule (Rrin = 3.015 a.w.). All entries in a.u.?

5 FSGO Dbasis set

13 FSGO basis set

' z

Hi l Z; i |
1 16.42732 —0.00297 959.6846 —0.00003
2 3.63202 0.00290 140.3080 0.00010
3 0.94487 —0.01854 30.8390 --0.00058
4 0.68482 ‘ 2.95350 27.9462 | 3.01466
5 0.10571 2.45125 8.6188 , 0.00077
6 4.0767 3.00295
7 2.8180 —0.00477
8 1.0291 —0.00881
9 0.8819 3.01526
10 0.4227 —0.22703
11 0.3920 0.36467
12 0.2163 2.69490
13 0.0627 2.38063
ESCFD —17.852243 —7.985269
2 gee Text for the definition of symbols. The FSGO’s are defined by Eq. (34).
b Total molecular SCF energy including the nuclear repulsion contribution.
TABLE Al

Optimized FSGO bases for the BH molecule (Rpy = 2.336 a.u.). All entries in a.u.?

15 FSGO basis set

! 5 FSGO basis set 6 FSGO basis set
i === ;
i A ui Z;

1 | 31.3096 0.00002 | 110.3867 0.00004
2 4.4977 0.00140 16.2114 ~0.00002
3 2.6129 2.32008. 3.4065 0.00259
4 0.27147 1.55643 2.2823 2.31601
5 0.19890 —0.37884 0.2645 1.54502
6 0.2000 | ~—0.40500
7
8
9 |

10 }

11

12

13

14

15

ESCFb —24.281764 | —24.822968

2, b gee Footnotes to Table Al

Hi l Z;
3540.99 ‘ 0.00001
565.2579 —0.00007
130.0441 —0.00033
49.8653 2.33617
36.9590 0.00235
11.5149 --0.00389
7.4403 2.32193
3.9539 0.01636
1.7889 —0.12401
1.3347 2.30958
1.2625 0.24634
0.4039 —0.38935
0.3429 1.45868
0.1205 1.81307
0.1060 —0.39584

—25.113196
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TABLE Alll
Optimized FSGO parameters for the FH molecule (Rpyg = 1.728 a.u.). All entries in a.u.
7 FSGO basis set 9 FSGO basis set 22 FSGO basis set
i = = = —
Hi . Xy(1y) ‘ Z; i Xi(Yy) ‘ Z; Mi l Xi(Yy) ' Z;

FSGO’s contributing to o-type molecular orbitals ®

1 | 223837 0.0 0.00044 | 117.5192 | 0.0 0.00039 [7213.3129 | 0.0 —0.00001
2 0.7484 0.0 —0.19989 | 18.1960 | 0.0 ‘—0.00375 ‘1080.5591! 0.0 —0.00006
3 | 07045 |00 0.67592 |  4.0479 | 0.0 0.21857 | 246.6377 | 0.0 0.00019
4 0.8440 | 0.0 —0.24966 | 68.8467 | 0.0 0.00053
5 | o.ssszl 0.0 0.84213 | 33.8650 | 0.0 1.73280
6 ‘ 22.0206 | 0.0 ‘ 0.00029
7 ‘ ! 7.5286 | 0.0 —0.00339
8 5.2199‘ 0.0 0.09696
9 2.5079 | 0.0 —0.11382
10 17321 00 | 1.67782
i 1.2489 | 0.0 0.18097
12 0.5431 | 0.0  |—0.08551
13 0.5064 | 0.0 0.47882
14 | 0.2569 | 0.0 1.68233

| FSGO’s contributing to a-type molecular orbitals ®
1 ‘ 09462 |0.04829 | 0.01662 | 09883 | 0.04118 | 001784 | 3.1446 | 0.03004| 0.00474

2 0.5567 | 0.03016 | 0.06216

ESCFe —84.656850 —95.008089 —99.354810

3 For o-type molecular orbitals the FSGO origin vectors are R; = (0, 0, Z;). The FSGO’s are defined
by Eq. (34).

b For m-type molecular orbitals each FSGO with the origin vector R; = (z;, 0, Z;) generates three
other FSGO’s with the origin positions defined by (—a;, 0, Z;), (0, a;, Z}), (0, —ai, Z;) and the same orbital
exponent k;.

¢ Total molecular SCF energy including the nuclear repulsion contribution.

set for LiH the initial parameters due to Karunakaran and Christoffersen [33] were further
optimized in this paper.

The parameters for 5 and 13 FSGO set for the LiH molecule are shown in Table AL
The 5 FSGO set was employed for the GG optimization while the other was used for the
final calculation of the second-order pair energies. Three different FSGO bases were
optimized for the BH molecule and are presented in Table AIl. Since the addition of one
FSGO leads to a considerable improvement of the total SCF molecular energy in comparison
with the 5 FSGO set, the GG optimization was finally performed with the 6 FSGO
expansion of the SCF molecular orbitals. The 15 FSGO set was utilized in the calculation
of the final values of the second-order pair energies.

In the case of the FH molecule (Table AYII) the 9 FSGO set was used to represent
the SCF orbitals for the optimization of GG’s for ¢o-, on-, and nz-pairs. The GG’s for
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nn'-pairs have been optimized with the SCF orbitals expanded in terms of 7 FSGO’s.
The final second-order pair energies have been recalculated using the largest, 22 FSGO set.
It should be pointed out that each FSGO contributing to z-type molecular orbitals in FH,
though represented in Table AHI by a single entry, corresponds in fact to four FSGO’s
with the same exponent and the appropriate values of X; and Y;.
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