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The zero-phonon and the phonon-assisted optical spectra of condensed molecular and
solid-state systems are analyzed theoretically in the adiabatic approximation. The separation
of the radiative transition matrix into vibrational and electronic components is considered
quite generally, noting the limitations of the Franck-Condon principle. An expansion approxi-
mation for the adiabatic electronic matrix element is shown to remain valid in the zero-
-phonon limit. The effects of dispersion in the multi-dimensionial optical modes as well as
of polarization from short wavelength acoustical modes are considered. The temperature
dependence of the widths of phonon-assisted absorption and luminescent bands and the
dependence on hydrostatic pressure of vibronic spectra are discussed.

1. Introduction

Many years ago Jabtonski [1] considered theoretically the broad band widths and
spectral displacements of fluorescence compared to absorption for condensed matter,
specifically for fluorescent dyes in solutions, on the basis of the Franck-Condon principle,
which had been originally developed for polyatomic gases. Since then this idea has been
widely used in explaining the photo-excitation and luminescent spectra of atomic or
molecular dopants in solutions and in crystals. The advances in materials preparation, in
spectroscopic and related measurements and in the theoretical understanding of molecular
and solid-state physics now facilitate more detailed, rigorous analyses of these spectra.
For example, the observation of zero-phonon and individual vibronic transitions and the
effects of temperature and hydrostatic pressure on these transitions allow for more detailed
understanding of the interactions of ions or molecules with local or lattice vibrations in
condensed matter.

The adiabatic approximation is assumed valid, that is, the electronic states are smoothly
perturbed by the motions of the nuclei and the nuclei move in an effective potential which
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includes the eigenvalue for the electronic energy with its parametric dependence on the
positions of the nuclei. This effective potential is the adiabatic potential plotted as a func-
tion of the nuclear positions or configurational coordinate as shown in Fig. 1. The force
constants K, equilibrium positions R(0) and energy minima E(0) are different for the
ground and excited states because electronic eigenvalues and their parametric dependence
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Fig. 1. Configurational coordinate model, showing representative vibrational wavefunctions, and represen-
tative transitions; Ay, — zero-phonon transition, sy, — relaxed phonon-assisted absorption, kv, — relaxed
phonon-assisted emission, and Avy — unrelaxed emission (hot Iuminescence)

on R are different for the two electronic states. For small molecular ions such as NO,
at anion sites in alkali halides [2] and dye molecules in solutions [1] the conﬁgﬁfation
coordinates are intramolecular vibrations modified by coupling with the matrix; for point
charged dopants with effective mass states in semiconductors the configuration coordi-
nates is describable in terms of linear combinations of optical modes of the lattice [3]. In
Fig. 1 the adiabatic potential is assumed harmonic; representative vibrational levels m
and # of the ground, g, and excited, e, states respectlvely, with vibrational wavefunctions
Ymg and . are also shown.

The Franck-Condon pr1n01p1e states that optlcal transitions take place vertically
on the configurational coordinate dlagram as shown in Fig. 1. For a phouon—a551sted
transition with large Stokes shift, the Franck-Condon principlec an be used in combina-
tion with approximating the y of the final state by a delta function at the classical turning
point R,. Then the optical transition matrix M. (n, m) can be separated into vibrational
and electronic matrix elements

M (n, m) = [ 1r R)tmg(RYIR] % [] @7 (r; R)rdg(r; R)dr], 6]

which is valid if either n or m is a small integer and if the other is a large integer (the latter
level has its y approximated by the d-function). The ¢, and ¢, are the electronic wave-
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functions for excited and ground states. If we denote the overlap integralv, for example
for absorption

See(1s 1) = § 10 R)fmg( R)AR, @

then in this case for m small and n large, within the above approximation: S (n, m) =
— %n(R.). In the following we consider more general approximations to M.,(n, m).

2. General transition matrices for vibronic transitions

With more detailed spectroscopic data becoming available for atomic and molecular
dopants in condensed media, especially at low temperatures and for systems with vibronic
structure, a better approximation to M, (n, m) is needed. For harmonic adiabatic po-
tentials S,4(m, m) can be calculated exactly [4], however, M(n, m) does not involve,
See(n, m) as a simple factor, as in Eq. (1), because the electronic matrix element is itself
dependent on n and m, in the full adiabatic approximation.

Thus we consider how to approximate M, (n, m) in terms of See(n, m) for more
general transitions than those for which the §-function approximation is valid. The J-func-
tion is not valid when both » and m are small integers. A general approximation should
satisfy the following limit condition

Lim M (0, m) = Lim M(n, 0), 3)

T om0 ‘h—0

where the functional form for M (n, m) is assumed to be unchanged in the limits. Of
course, the zero-phonon transition has equal transition matrix for emission and for
absorption, as is evident from detailed balance. For the phonon-assisted transitions the
irreversible relaxations obviate observation of the same vibronic transition in absorption
and emission, except for hot luminescence (See Fig. 1).

The general expression for the matrix element for luminescent vibronic transitions

in the full adiabatic approximation is

M(n, m) = [ {1re(R)2ne(R) [] @1 (r; Ryrg(r; R)dr]}dR. 4
If we expand { ¢ (r; R)r¢,(r; R) about some R,,, we obtain
§ 65(r; Ryrgy(r; Rydr = | @3(r; Ry (r; Ryp)dr

+{R—Rep)* Ve +3 [(R—R,p) - VeI’} § $E(r; R)r@y(r; R)drig=g,,,+ - - &)

The R, is chosen as follows, in order to obtain the best approximation with the fewest
terms

Ry = [t RIR 1ug(R)AR[Seg(n, m)] ™ ©)
and thus to first order in the expansion, we have

MG (n, m) = Se(n, m) § @7(r; Run)r@y(r; Ryn)dr )
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and to second order
M (n, m) = Mg (n, 1) +3 {f 2 (RIR* Lg(RYAR — Ry}
X Vi § $2(r; R)rgy(r; R)drig-g,,- )]

Both Eqgs. (7) and (8) satisty Eq. (3) for the zero-phonon transition. From Eq. (6) the
value of R can be determined [4] for calculating the electronic matrix element in Eq. (7)
or for determining M.,(n, m) to higher order with Eq. (8); in both cases taking account,
but to different orders, of the dependence of the electronic matrix element on n and m.-

3. Dispersion in multi-dimensional modes

With the increased rgsolution of current molecular and solid-state spectroscopy,
"particularly with materials of well-defined composition at low temperatures, the line shape
of individual vibronic transitions can be studied. One contribution to the line widths is
coupling to long wavelength acoustical phonons. We propose another- contribution,
consistent with the analysis of Section 2, based on the dispersion of the optical phonons
responsible for the vibronic structure.

As noted earlier, in some cases the single configurational coordinate R is the coordi-
nate of a unique local mode, for example an intramolecular impurity mode; for other
cases such as effective mass dopants in crystals R is some ‘“‘average coordinate” of the
6N-normal coordinates of the lattice.! If we consider the 6 N-dimensional configurational
coordinate diagram, then the adiabatic potential surface for motion of the atoms is

6N

K
(E-Eo) = z S [e-207. ©)

s=1

where O, and Q(0) are, respectively, the sth normal coordinate and the corresponding
component of the position for the energy minimum. Phonons of different energies, how,,
can be created or annihilated in the phonon-assisted transition. Let ¥, be the coupling
constant between the s-mode and the electronic particle, then the interaction E,_ . is

Ee]-ph = Z {Vsase_iqs v + Vs*a;—e_iqs ' r}’ (10)

s

where a, and 4. are the annihilation and creation operators for phonons of the s-mode,
r is the position vector of the electronic particle and ¢, is the wave number vector for the
phonon. We can approximate Eq. (9) by a single configurational coordinate as follows

(B~Eg) = 22 [R-RO)T, (1)
where
Kave = [Z \/K| Vs|2]2[z IV;iz]—z° (12)

t Here we are considering the lattice to have two atoms per unit cell and N unit cells.
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The line width will be characterized by the mean square deviation in @ given by

(do)* = ¥ (0, 0y’ VI [X Vel (13)

where
O = X, O VLY W17 (14)

For effective mass dopant states the phonon spectrum is to a good-approxiirnation
independent of electronic state of the dopant. The w; are obtained from the dispersion
curve f(w) for the optical phonons, thus Eq. (14) becomes

Do = [ flogp @] 1V dal [ 1V, 17dq'T, (15)
where V, can be obtained from polaron theory [5]
V,= — E [2.7_1%1"(4{)] (i - i)llz 16)
q v gx €0

and &, and g, are the high and low frequency dielectric constants and v is the crystal
volume.

In this analysis we have shown that for effective mass dopant states in particular,
the multi-dimensional configurational coordinates can be represented by a single con-
figurational coordinate and that vibronic line width in part originates from phonon
dispersion. The multi-dimensional configuration coordinate problem has been analyzed
by others [6-9]. It is also to be noted that the zero-phonon and phonon-assisted transitions
of effective mass dopants can be described by the adiabatic potential with the configura-
tional coordinate represented by the lattice polarization [10, 3]. '

The lattice polarization is normally described in terms of the optical phonons, in
fact polar modes are usually equated to the optical branch of the lattice modes. However,
it can be shown, for example for a one-dimensional lattice containing two atoms per unit
cell, that only in the limit of zero quasi-momentum does the acoustical branch contain no
polarization and that at the zone boundary the acoustical and optical branches contribute
comparably to lattice polarization. By considering two types of motion in the unit cell:
one which only displaces the “‘center” of polarization already present; the other which
only changes the magnitude and/or direction of the polarization in the cell, it can be shown
that as long as the polarization effects are independent of the location of the polarization
within a unit cell a single branch representation is adequate. On the other hand, if the
polarization effects depend on changes over a distance small compared to a unit cell dimen-
sion then a two branch representation is necessary.

4. Temperature-dependence of broad band spectra

L 4
We consider the temperature dependence of the half-width of the broad band phonon-
-assisted absorption or emission spectra when a dissipative term is present. A dissipative
term has been suggested for the electron-phonon interactions in organic systems [11].
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Also for some inorganic materials [12] the second moment; 4E; of the emission spectra
has the form

ho (1 1
. _ 1/2 o
AE(T) = AE(0) coth [—Zk (T —TO):I R {amn

which we shall now show is explainable by including dissipation.
We use Fig. 1 with R.(0) chosen to be zero, then

AE(T) = 2K [(R—R)'1"R(0) (18)

where [(R—R)?]V/2 is the mean square deviation of configurational coordinate at T, when

the system is in the excited state. In order to calculate (R~ R)?, we must know dWp, which
is the probability distribution for R. The form of dWjy is

C N
AWy = 7 exp [—R*C*]dR} 19)

where

when there is no dissipative term [13] where the following assumptions have been used

P

=1, — _len—l,n Pn+1,n = letH-l,n

R_—I,O =0 En+1 = En+hwe (20)

and

Rn+ 1.n = Rn,n+ 1s

where R,,,, and P, , are matrix elements for R and its conjugate momentum. If we
make the assumption that there is a dissipative force acting on the oscillator, so that,
detail balance does not hold, and that it is represented by replacing the last condition of
Eq. (20) by

— 2

— o7
Ryy1n=e Ryuv1

w, " ho, P2\ 12
¢ = |2 tanh AT 21
[h an (ZkT 2)] @1

—— 1
If 92 = ho fkT, > 0, then since [R—R)* = Se7 Ve get AE(T) given by Eq. (17).

then we find for C

»
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5. Effects of hydrostatic pressure on impurity spectra

We next consider the application of macroscopic external forces to the microscopic
system described by the configurational coordinate model. The general idea is that the
macroscopic force causes a shift in the equilibrium position of the adiabatic potential
energy ‘curves for each state independently and that this shift depends only on the form
of each curve for zero force plus the nature of the applied force. The equilibrium can be
shifted both in position and energy. Vibronic transitions can change in energy and in-
tensity [14]. ‘ _

We consider the case of the application of hydrostatic pressure in the harmonic
approximation [15] as shown in Fig. 2. At the equilibrium the total force is zero and
therefore for the ground electronic state

PA
Ry(P) = R(0)— f . (22)

N
Ry(P) Re(O)Rg(O)

R —
Fig. 2. Configurational coordinate model, with and without hydrostatic pressure

where A, is the coupling constant between the system and the pressure. The energy of
the new equilibrium can be determined by the work done adiabatically on the system by
the force, which gives
P42
g .
E (P) = E(0)+ T (23)

g

The new energy curve is given by the sum of the equilibrium energy plus a position-
-dependent term that gives the force and is zero at R,(P). We obtain for the ground state
(cquations similar to (22)-(24) exist for the excited state)

K P42
E(R,P) = —2—“ [R—R,(P)]*+ ﬁ-g- + E(0). (24)

g
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From which we find the transition energy

A A\ +E,.(0 25
K. K )2 TP @)

Enm(P) = <

g

Anharmonicity introduces linear dependence on pressure [14]. Also the pressure-depend-
ence of the vibronic transition matrix can be calculated with this model [4].

6. Conclusions

The general approach originally used by Professor Jabtoniski to interpret broad band
spectra of dyes in solutions has been extended to explain the spectra of impurity ions and
molecules in condensed matter. The transition matrices have been generalized to be valid
for both zero-phonon and phonon-assisted transitions; effects of the dispersion of phonons
and of dissipation can be determined; and dependency of these spectra on temperature
and on hydrostatic pressure calculated.
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