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A formula for the differential photoionisation cross section for elliptically polarized
light is derived and shown to lead, in particular cases, to all the hitherto known formulae
for linearly and circularly polarized as well as unpolarized light. The angular photoelectron
distributions in the one-quantum photoeffect are discussed in their dependence on the
polarisation state of the electromagnetic radiation. In particular, those directions of photo-
electron emission are determined for which the differential cross section is the same for all
states of light polarisation. An interesting theorem is proved, enouncing that the sum of
electrons ejected in two mutually perpendicular directions, lying in the plane perpendicular
'to the photon propagation direction, is a quantity independent of the state of light polarisation.
Three methods are proposed for measurements of the asymmetry parameter § versus the
photoelectron energy W using elliptically polarized light. It is shown how photoionisation
experiments can be applied to determine the ellipticity parameter and principal axes orienta-
tion of the polarisation ellipse of elliptically polarized radiation. Five new summation
formulae, fulfilled by spherical harmonics, are proved.

1. Introduction

Since 1972, the electron synchrotron has come into frequent use as the source of
electromagnetic radiation in studies of the one-quantum photoeffect, especially in deter-
minations of the asymmetry parameter B(W) [1-10]. Although synchrotron radiation,
emitted in the plane of the synchrotron (electron orbit) is completely linearly polarized
in that plane, the radiation emitted at an angle to the plane of the synchrotron exhibits
completely elliptical polarisation. The ellipticity parameter « (the ratio of the small and
large semi-axes of the polarisation ellipse) is a function of the emission angle measured
with respect to the synchrotron plane. This state of polarisation of synchrotron radiation
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had been predicted theoretically by Sokolov and Ternov.[11] and was first observed
experimentally by Joos [12] at the Cornell synchrotron. It is important [12] that synchrotron
radiation, emitted at an angle of as little as several milliradian with respect to the synchro-
tron plane,.is perceptibly polarized elliptically. With regard to the rapidly developing
studies on one-quantum photoeffect by synchrotron radiation, the problem of the angular
distributions of photoelectrons, ejected from atoms by elliptically polarized radiation,
is steadily gaining in importance. Though the problem has already been dealt with by
Schmidt [13] in 1973, we believe ours is the first complete analysis there of; in addition,
we propose three methods for the measurement of the asymmetry parameter S(W).

2. Differential photoionisation cross section

The golden rule of Fermi [14] can be taken as the starting point of the theory of
angular distributions of photoelectrons, emitted from a sub-shell #/ of isolated, randomly
oriented (unpolarized) atoms under the action of elliptically polarized radiation with
photon energy fiw at least equal to the bonding energy of electron in the sub-shell:
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Above;  is the circular frequency of the incident electromagnetic radiation, ¢ — the
velocity of light, Kk = |k| the wave number of the photoelectron related to its energy W
as follows: W = h?k?[2m, whereas a, = 5.29 x 10~ cm is the Bohr radius and ¢ |M7™2>
the squared module of the matrix element of the quantum transition averaged over the
magnetic quantum numbers m of the light-absorbing electron. In the non-relativistic,
electric dipole approximation, the one-quantum ionisation transition matrix element is:

My" = [ dp(r)es - 1y, (r)dr, 2

where @,,,,(r) and @y (r) are the wave functions of the electron in the atom and, respectively,
detached therefrom (photoelectron), r the radius vector of the electron with origin at the
nucleus, and e, the unit (in the meaning that e, - 5 = 1), in general complex polarisation
vector of the electromagnetic radiation. On the central potential model, the one-particle
wave functions of combining quantum states of the electron can be written in the form [15]:

¢nlm(") = Rnl(r)Yl,m(‘ga (P)a (3)
$w(r) = (8n°/k)*/? IZ 1Y, (S P1) Yigm (95 )Ry “
£y

where r = [r|, 9 and ¢ are the polar and azimuthal angles defining the orientation of r,
9 and @, are the angles defining that of the wave vector k of the photoelectron, J;, is
the shift in phase of the / -th partial wave of the latter, Y,,, are spherical harmonics, and
Ry(r), Ry (r) are the radial parts of the complete wave functions of the bound and
emitted electron, respectively. We now assume the Z-axis of Cartesian coordinates to
coincide with the propagation direction and the axes X and ¥, respectively, with the large
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and small semi-axes of the polarisation ellipse of the elliptically polarized incident 1adiation,

causing the photoeffect (Fig. 1).
For this geometry, the unit polarisation vector of the radiation takes the form:

_ i+ikj

= () 2
where { and j are unit vector along X and Y, and x = b/a the ellipticity parameter (the
ratio of b, the small and a the large semi-axis of the polarisation ellipse), which lies in the
interval 0 < x < 1, the value 0 corresponding to complete linear polarisation along X
and the value 1 to circular polarisation. For x # 0, the sign “+ at the imaginary unit

A%
Fig. 1. Coordinate system, applied for calculating the differential cross section for ionisation by elliptically
polarized light. The Z-axis is chosen to coincide with the photon propagation direction; the X-axis

with the direction of the large semi-axis @ of the vibration ellipse of light; and the Y-axis with the
small semi-axis b. The wave vector of the photoelectron k = k(k, 9y, or)

corresponds to right and “~” to left polarisation, defined according to the convention
for angular momentum. The scalar product e, * r in the volume integral (2) can now be
expressed, in a form well adapted to our aims, in terms of first-order spherical harmonics:

Qxn/3)r

€T = AT (1FOY, 9 @—(1 )Y, (3, @) (6)
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With regard to the relation
§ Y @)Y (95 @) Vi (9, 0)dQ
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permitting the expression of an angular integral over the product of three spherical
harmonics in terms of Wigner 3j-coefficients [16], we obtain the squared module of the

nim

matrix element M%™ in the following form:

3
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where, for brevity, we have introduced the notation:
Sy(m) = (1 m) (42 m) 243 Y e O 9P
Sy(m) = (I=1=m) (I=m) QI=1)"" Y= 1+ 1% Phl®,
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Above, Ry, is the usual dipolar radial matrix element, defined as follows:

‘R%,zﬁ = gRW,li 1(7’)7'an(7')’"de‘

®)

©®)
(10

(1D

(12)

13)

(14
(15)

(16)



483

In accordance with the following definition of the isotropic average of the function f(m)
over the magnetic quantum number m:

+1

S, = QI+D71 )3 lf(?ﬂ), an

we now have to calculate the six sums S ;=2 S{m), where the quantities S';(m)
(= 1,2,..,6), are given by Eqgs (9—(14). By way of the formal interchange m — m+1,

the sum 53 can be put in the form in which it occurs in the book of Varshalovich et al. [16].
The result taken directly from Ref. [16] is:

1
G = 10+1) 2—35in? 5,). (18)
3 8=
The other five sums G, G, G4, Gs and Ge remain to be calculated in the present paper.

Applying certain summation ‘and recurrential formulae fulfilled by spherical harmonics
and tabulated in [16], we prove the five novel summation relations:

1 . 3
Sl = g(l+1) [21+(1+2) sin® 8;], (19)
S = iz[z(z+1)+(l—1) sin® 9], (20)
2 8n
54 = — Sin (I+1) (1+2)sin? 9, (21)
S e ll(l—l) sin? 9 (22)
E 877, ks
S = 2l nsin 9 (23)
6 8n &

With regard to these summation relations, as well as Eq. (8), we obtain the following
expression for {|Mu"|2),

2 2
1—x
M, = Bt Csin? 8,1
My m k(21+1)2[ +Csin” 9, ( 1+ 15 cos 2¢ |, 24
where
B = l(I1+1) [(R'}‘Il’,l+ 1)2+(R'vlvl',t—1)2+2R;'tl/,z+ Ry ,_ 1 cos (Or41—~6;-1)], (25)
and

C=20+D+2) Ry 1+ )*+11(~1) (R, )?
~31(+ 1Ry, 1RY71-1 €08 (8144 — ) 1) (26)
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Insertion of Eq. (24) into Fermi’s golden rule (1) leads to the following general formula
of the angular distributions of photoelectrons emitted from the nl subshell of randomly
oriented atoms due to elliptically polarized electromagnetic radiation:

danl _ Oy

1—x?
— 1+pomy| 21+ — in? 9,1 ]
19, = i { +B( )[,,,( + T cos 2¢pk) sin® 9, 2]} 27

In this, the final formula of the theory proposed by us, f(W) is the asyminetry parameter
defined as: ‘

BOW) = [I(1—1) Ry ;- > +(1+1) (1+2) (Rip41)*
—~6I(1+ )Ry 14 1 Riy -1 €08 (8141~ 91-1)]
x {21+ 1) [IRy1- )+ (4D Ry )T (28)
whereas o, is the total photoionisation cross section, given as follows:
4n*  waj

W32+ ¢ IRy -1 +(+1) (R 14 )] 29

If more electrons than one are present in the sub-shell n/, the right-hand term of 29
has to be multiplied by the number of these electrons. We note that neither the differential
or total cross-sections depend on whether the radiation is right or left polarized. However,
the total (contrary to the differential) cross section is moreover independent of the ellipticity
parameter « and, thus, of the state of polarisation of the radiation causing the one-quantum
photoeffect.

This, among others, is a feature distinguishing the one-quantum photoeffect from
multi-photon ionisation, where both the differential and total cross sections are rather
strongly polarisation-dependent [17]. Thus, in the case of the one-quantum photoeftect,
the so-called polarisation effects are related with the differential cross section only. In
fact, Eq. (27) derived above should also describe correctly the angular distributions of
photoelectrons emitted by randomly oriented molecules as well as those of dissociation
products of molecules and nuclear reactions due to elliptically polarized radiation with
a wavelength much in excess of the linear dimensions of the objects taking part in the
effect. With regard to the condition of non-negativity of the differential cross section (27),
the asymmetry parameter has to be contained within the interval —1 < 8 < 2. It may be
worth stating once again that, in (27), 9, and ¢, are polar and azimuthal angles in a Cartes-
jan coordinate system the Z-axis of which coincides with the propagation direction of the
incident photons and the X-axis with that of the large semi-axis of the polarisation ellipse
(see, Fig. 1).

The formula (27), derived here, is the most general expression describing angular
photoelectron distributions in one-quantum effect; for various particular cases, it reduces
to hitherto known formulae for linearly polarized, circularly polarized and unpolarized
light. On putting e.g. ¥ = 0, which corresponds to complete linear polarization along the
X-axis (Fig. 1), and having recourse to the following formula of spherical trigonometry:

cosy = cos 9; cos 3, +sin 9, sin §, cos (¢~ P2), 30
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where y is the angle subtended by two vectors with orientations given by the angles 8,, ¢,
and &,, ¢, we obtain in particular: i

d Ont Oy,

L [1+B(W)Py(cos 6)] (linear polarisation). 31
dQ, 4n

This is Bethe’s well known formula [18] for linear polarisation, where P,(x) = 3x>—1

is a Legendre polynomial and 0 the angle between the direction of the electric vector of

incident radiation and the ejection direction of the electron. Whereas on putting in (27)

x = 1, corresponding to completely circular polarisation, we obtain the previously known

formula:

d .n n . . .
d;l = :l [1—3 B(W)P,(cos ;)] (circular polarisation and unpolarized), (32)
k T

where & is the angle between the propagation direction of the radiation and the direction
of ejection of the electron. Eq. (32) holds as well for unpolarized radiation [19]. The general
expression (27) also remains valid if the incident radiation is partly polarized linearly.
In this case, we have but to carry out in (27) the formal interchange:

2
1—x Imax 7 Imin

N, p \ 33
1+K2 =, p Imax+1min ( )

where p is the degree of polarisation, and I, Iy, the maximal and minimal intensity,
corresponding to the two mutually perpendicular electric vector components of the partly
linearly polarized beam, whereas the azimuthal angle ¢, has to be measured with respect
to the most prebable vibration direction of the electric vector _of' light.

If the photoionisation originates in the subshell 70 (I = 0), then (W) = 2 has to be
put in all equations, in accordance with (28).

3. Polarisation effects in one-quantum photoeﬂect

On comparing Eqs (27) and (29) we draw the following conclusion: In the one-
quantum‘photoéffect, the so-called polarisation effects commonly understood to denote
a dependence of the differential and/or total cross section on the state of polarisation of
the electromagnetic radiation bear solely on do,;/dQ, but not.on a,.

Let us consider the angular photoelectron distributions in the plane perpendicular
to the light propagation direction (the XY-plane of Fig. 1) versus the state of light polari-
sation. In this case 9, = 90°, and ' '

1-x? !
{1 +B(W) [%+ T 5008 2%}} . (34
: ST 14k
The unsophisticated analysis of (34) taking into consideration the condition — 1 < f( w)<2

— that of non-negativity of the differential cross section — leads t'vo the following conclu-
sions:

do, oy
ko il 4
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(1) For unpolarized and circularly polarized light, contrary to the case of elliptically
or linearly polarized light, the distribution in the XY-plane is isotropic. Such a distribution
is directly related with the circumstance that, in unpolarized and circularly polarized
light, no direction in the plane perpendicular to the light beam is favoured;

(2) For ¢, = 45°, the differential cross section is independent of x and thus is the same
as for unpolarized and circularly polarized light. Hence the angular distribution curves
for the various states of light polarisation intersect in the point ¢, = 45°;

(3) The total number of electrons ejected in any two, mutually perpendicular directions
lying in the XY-plane is independent of x and thus is independent of the state of light

200
55°
270°
285°
300° | ’\.\\‘--“-///j 60°
35° \“\.\\.___‘,,z’/ P
33 30°

45 °
34 X 15

Fig. 2. Angular distributions of the photoelectrons (in relative units) in the plane perpendicular to the light

propagation direction, for various states of incident light polarisation. Curve is for linear polari-

sation; curve —-—-— for elliptical polarisation with x = 1 |2; curve —— — for circular polarisation and
unpolarized light. All the curves are plotted assuming § = 2

polarisation, and is proportional to (o,/4n) [2-+% B(W)]. In particular, if the light wave
is elliptically polarized, these directions can be those of the large and small semi-axes
of the vibration ellipse;

(4) If p(W) is positive and the incident light elliptically polarized, the number of
electrons ejected in the direction of the large semi-axes of the ellipse is always larger than
that of the electrons ejected in the direction of the small semi-axis;

(5) If, however, f(W) is negative, fewer electrons are always ejected in the direction
of the large semi-axis than in that of the small semi-axis:
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(6) If B(W) > 0, the number of electrons ejected in the direction ¢, = 0° by linearly
polarized light is always larger than that of the electrons ejected by elliptically polarized
light of the same intensity. In either case, the number of electrons ejected in the direction
@ = 0° is larger than for circularly polarized and unpolarized light;

(M) If p(W) > 0, elliptically polarized light ejects more .electrons, in the direction
@ = 90° than linearly polarized and less than circularly polarized and unpolarized
light;
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Fig. 3. Angular distributions of photoelectrons (in relative units) in the plane perpendicular to the photon

propagation direction; Curve is for linear polarisation; curve —-~-— for elliptical polarisation
withx = 1/2; curve ——— for circular polarisation and unpolarized light. All the curves are plotted on the
assumption f = —1

(8) It (W) < 0, the number of electrons ejected in the direction ¢ = 0° is the
largest for circularly polarized and unpolarized light and the smallest for linearly polarized
light;

(9) If (W) < 0, the number of electrons cjected in the direction @ = 90° is the
largest for linearly polarized and the smallest for circularly polarized and unpolarized
light. '

Figs 2 and 3 adequately illustrate these properties of the angular photoelectron
distributions in the plane perpendicular to the propagation direction of the light wave.
The graphs are plotted in polar coordinates, for Eq. (34), assuming the limiting values
B(W) = 2 in Fig. 2 and (W) = —1 in Fig. 3. The number of electrons, gjected from the
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irradiated volume™of the atomic gas at the angle ¢ to the light propagation direction in
the perpendlcular ‘plane, is rendered by the length of the radiusvector connecting the orlgm
of-akes X, Y and the point on the distribution cutve. It is worth noting that for values of
B(W) other than 2 and —1 the curves are similar, with the significant’ difference that the
curve for linear polarlsatlon does not traverse the origin of coordinates but intersects
the Y-axis (Fig. 2); or X-axis (Fig. 3), in a point situated between the origin and the point
in which the distribution curve for elliptical polarisation intersects the Y-axis. (Fig. b))
or X-axis (Fig. 3).

4. Methods for the measurement of the asymmetry parameter using elliptically polarized
light

On the basis of the theory of angular photoelectron distributions of Chapter 2, we
shall now propose methods for the measurement of f(W) when applying elliptically polar-
ized light. The problem is of especial practical interest at the present stage when the electron
synchrotron [1-10] is increasingly applied in photoionisation experiments as a highly
appreciated source of in general completely elliptically polarized radiation [11, 12].
Measurements of the asymmetry parameter f versus the photoelectron’ energy W ~ hw
are important because S(W) characterizes completely the anisotropic part of the angular
photoelectron distributions and conveys information on the matrix elements of the photo-
ionisation transition-as well as the difference in phase shifts of the two partial photoelectron
waves at inference. X

Let us assume the photoelectrons as being ejected from a point source and the photo-
electron detector (with regard to its finite dimensions) as capturing all the photoelectrons
ejected into the “interval from 9,—A49, to H+49, and from ¢,—Ad@, to @r+A@;.
Denoting by d the distance from the source to the detector, the surface of the detector
on which those electrons are incident is given approximately by 4d? sin 9 sin 49,4 ;.
Integration of the general expression (27) over 9, from ;- ASk to 9y +A9k and over gy
from @,—Ag; to @+A@, now ylelds ;

N(Sxpr) =

Ny .
7 4_n‘|:1'—7 B(W)

A9 |
+3 B(W) sin? 9 (1 + sm——" _ 4 sin? ASk)
k
1—x2 1
X (1 + A cos 2qy, sin Q424 |, (35)
K.

where N(9;, @) is the flux of photoelectrons emitted in the -direction 9z, @ @i ie. their
number, incident per unit time per unit surface area “of the detector; and N, the number
of those emitted per unit time into the body angle 4n. On the assumptlon that the detector
fecords photoelectrons from a small body angle only (43, <1, 4g, < 1), Eq. (35) takes
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the form’
N3 ) = —
& Pr) = 47‘cd2
s 1—1c2 - ,
1+ﬁ(W) I 1+1c2 cos 2¢y §sin® Jp—35 ¢ . “ (36)
4,1. Method I

A non-trivial method for the measurement of B( W) using elliptically polarized
radiation can well consist in measuring the ratio # of the fluxes of photoelectrons for two
directions of ejection 9, ¢y and 9;, 9 since, with regard to the general equation (36);
we have '

1-n

P = st w1 o)” 67
with T
e 2 g)) ;
Sonp =3 (14 oy costne )it @)

Above; N(;, @;) and N(9;, ¢ ) are the fluxes of photoelectrons ejected in the direc-
tions 9y, @ and 95, ¢y, respectively. If one of these two directions is made to coincide
with that of the large semi-axis of the polarisation ellipse (9 = 90°, @y = 0°) and the
other with that of the small semi-axis (9; = 90°, q);' = 90°)— see, Fig. 1, Eg. (37) becomes*

A+ D)~ NSy =90 gp = 0°)

0 zimm NG =5 - (0

the directions of the large and small semi-axis. Our choice of these directions is essentially
advantageous in that 7 now differs the most strongly from 1 (cf. the general equation (36)
and Figs 2, 3). In order to determine § from (40), the orientation of the principal axes of
the polarisation ellipse as well as the ellipticity parameter x of the electromagnetic wave
have to be measured in a separate-experiment (cf. Section__4.4). We stress that Eq. (40) is
not applicable to circularly polarized (x = 1) or unpolarized light.

42 Method Tl

Another method of measurmg ﬁ( W) with elhptlcally polarized light can have recourse
to the important fact that, for the azimuthal angle ¢, = 45°, the differential photoionisation
cross section is independent of x and, thus, of the state of polarisation. Putting 9, = 90°
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and ¢, = 45° in Eq. (36), we obtain the following simple formula for the asymmetry
parameter S(W):

4rd>

N(9y = 90°, ), = 45°) = L+% B(W). (41
t

The measurement of the value N, can, however, be reduced to that of the flux of photo-

electrons for the “magie” direction 9, = 54.73°, ¢, = 45°, for which the following

relation holds:

N,
N9, = 54.73°, =45") = —>. 42
(9 Pk ) and? 42)

With regard to the preceding two relations, we finally obtain:

BW) = 4(n,—1), (43)
where

N9 = 90°, g, = 45°
s NSy Pe = 4 _)_ (44)

T ON(S, = 54.73°, ¢ = 45°)

and N(%, ¢p) is the flux of photoelectrons, emitted in the direction 9, ¢;. Thus, by
measuring experimentally the ratio 5,, one can determine from Eq. (43) the asymmetry
parameter § for a given value of the photoelectron energy W ~ he. This method, like
method I, requires a supplementary experiment to have the orientation of the principal
axes of the polarisation ellipse, but there is no need to determine k. Eq. (43) remains valid
for circularly polarized and unpolarized light, albeit in this case 1, = N(9; = 90°)
[N = 54.73°).

4.3. Method III

Yet another method of measuring (W) using ellipticaily polarized radiation suggests
itself when one takes into account that the total number of electrons ejected in any two,
mutually perpendicular directions in the plane perpendicular to the light propagation
direction is independent of the state of light polarisation. In fact, by Eq. (36), we have:

N
N(9i = 90°, @)+ N(3y = 90%, ¢44-90%) = -—5 [2+3 A(W)], (45)
whence
 8nd? . ) . s
BW) = ST [N(S; = 90°, @)+ N(9) = 90°, ¢, +90°)] 4. (46)

t

Above, N, is the total number of all electrons produced per unit time in the photoionisation
process, and N(9, = 90°, ¢,) and N(9, = 90°, g, +90°) are the fluxes of electrons emitted
in the directions ¢, and ¢, +90°, both lying in the plane perpendicular to the light beam.
Eq. (46) from which S(W) is to be determined experimentally by Method III, does not
require a separate determination of x or the principal axes orientation (contrary to Methods
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I and II). In Method III, a separate determination of the. principal axes orientation is
necessary only if wishing; in accordance with Eq. (42), to reduce the measurement of N,
for technical reasons, to that of N(3, = 54.73°, ¢, = 45°) the flux of photoelectrons
ejected at the “magical” direction. Method III is applicable to elliptically, circularly
and linearly polarized as well as unpolarized radiation.

4.4. Determination of the ellipticity parameter x and principal axes direc-
tions from photoionisation studies

The ellipticity parameter « and principal axes of the polarisation ellipse can be deter-
mined by current methods of classical optics. They can, as well, be determined in photo-
ionisation experiments on atoms for which the asymmetry parameter S(W) is already
available. Atoms of helium and some other gases, for which f is constant and equals 2
for all frequencies of electromagnetic radiation, appear especially well adapted to this
purpose. Once f is available, ¥ can be determined from the following relation:

2 _ ’71(ﬁ_2)+2_(ﬁ_+_1_)
2, (B+D)+(B~2)’
resﬁlting from (40). Above, 7, is the ratio of fluxes of photoelectrons ejected from atoms

with known B(W) in the directions of the large and small semi-axes of the polarisation

ellipse of light. If f = 2, Eq. (47) reduces to:

1 NS = 90°, gg = 90°)

o1 NG =50, g = ) (48)
[/ lV(9k=90,¢k=0)

@7

2

whence one sees that, in order to determine k experimentally, it suffices to measure the
fluxes of electrons, ejected from the S(/ = 0)-state of e.g. helium in the directions of the
two principal axes. If the effect bears on s-electrons, the direction of the large semi-axis
is that, perpendicular to the light propagation direction, in which the most electrons are
ejected, whereas the fewest are ejected along the small semi-axis (cf. Fig. 2 and the discus-
sion following Eq. (34)).
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