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SPIN WAVE PARAMETRIC RESONANCE IN THIN
FERROMAGNETIC FILM NEAR THE PHASE TRANSITION
POINT ‘

By W. WASILEWSKI
Technical University, Kielce*
( Received December 30, 1977)

Processes arising under the influence of a variable magnetic field in the uniaxial ferro-
magnetic film are discussed. The anisotropy axis is perpendicular to the film plane and the
magnetic field exists in it. Calculations are made for the case in which the constant compo-
nent of the external magnetic field is near the critical value with regard to phase transition
from homogeneous to inhomogeneous magnetization state i. e. to the domain structure.

é Possibility of spin wave parametric resonance realization for low frequencies is shown.

Let us consider a thin ferromagnetic film of thickness L. Let us assume that the film
surfaces are placed in an (x, y) plane. The dimensions of the film in x and y directions are
larger than thickness L. The ferromagnetic material of the film has uniaxial anisotropy.
The easy axis of magnetization is perpendicular to the film plane. The anisotropy constant
B is less than 4n. The film is located in an external homogeneous magnetic field
H® = (0, H®, 0). Let us also assume that thickness L is larger than critical thickness L (0)
for which, if H® = 0, the phase transition from homogeneous to inhomogeneous magnet-
ization state occurs [1]. If L > L,(0), the phase transition appears for the critical field
HYL). If H® > HYL), the homogeneous magnetization lies on y axis, but if H* < H(L),
the domain structure is observed.

The aim of this paper is to describe the phenomena which arise in thin magnetic
film under the influence of an external magnetic field H°(t) = H°+5H (t). We assume
that:

H® = HYL); OJH%(t) = 60Hysinwt; J6H, < H°. (@)
The equations of mofion of the magnetization density vector ﬂ(?, t) have the Landau
form:

—

oM 2 Fe
S = slMx A, @

* Address: Instytut Technologii Maszyn, Politechnika Swigtokrzyska, Aleja Tysiaclecia Paristwa
Polskiego 7, 25-314 Kielce, Poland.

(449) .

<



450

where g is the gyromagnetical coefficient. The effective field H* is defined as follows:
= OF
H = — —.
73 (€)

Energy F of the system is expressed by the functional:
F = | 3a(VM)*~4 pM?—H°M,—% H"M)}dV, )
Vv
where H™ is the demagnetization field, « — isotropic exchange co'ﬁstant, B — uniaxial

anisotropy constant. The equation of motion should be solved simultaneously with
Maxwell’s equations which have the following form in quasistatic approximation:

rot H =0
div (H"+47M) = 0, 5)
where H' = H®+H™. The set of equations (5) can be expressed as follows:
H' = —grad ¢; ¢ = ¢"+¢", (6)
4ndivM—A¢d =0; Ag® =0, : )

where A is Laplace’s operator. The system of equations (2), (7) has the following form
in the linear approximation with regard to m,, m,:

(G am)ptme -

* o om, . og
hea s+ Vo, — (M)t 2 4 22
{ “(ax2+622>} M (Mog) "5 + 5 = O

om,
(]\4og)_1 ;n

om, om,
47
y ox 0z
where
-~ oM H*

and 8M is a small deviation of the magnetization density vector from the basic state vector
My = (0; My, 0).

While solving ithe set of equations (8) the boundary conditions should be taken into
consideration on the surfaces z = +L/2. According to [2] these conditions have fol-

lowing form:
om, (amz
tym, =0, == &
0z =t ; 0z

J' o= (o ¥ ©)



451

where 5 is the surface anisotropy constant. The boundary conditions put on ¢ follow
from the continuity of the z-component of the magnetic induction vector B, = H,+4nM,.
They are expressed by the formula:

dp  0¢°
N 4 | e = 0. 10
[ T <az az)]mug <

We shall express quantities m,, m,, ¢ in Fourier’s representation:
m(x, z, 1) = | dodxdkm (o, , k) exp {i(wt+xx+kz)}; j=x,2
@(x, z, 1) = | dodrdkg(o, k, k) exp {i(wt+xx+kz)}. (11)
By means of (11) the equations (8) have the form:
iQm, +(ag®— B+ hym, + ike = 0,
(og®+ )ym,—iQm, +ixe = 0,
dmitem ,+4ikm, +q*p = 0, (12)

where Q = (Myg)tw; g*> = k*+k?. The set of equations (12) can have non-trivial solu-
tions only when its determinant equals zero. Such condition allows one to determine Q:

Y = (iQ)? = q~ *{4npr® —g*(ag® +h) (ag” + h— B +4n)}. (13)

For Y = const and x = const equation (13) has three roots with regard to k?, or six
roots with regard to k. A detailed analysis of solutions of the set of equations (12) which
satisfy the boundary conditions (9), (10) has been made in [1]. Further considerations
will concern the small real root

k,=—; n=12,... (149)

In this case (¢? ~ x?) relation (13) has the form:
4n3pn’

Y=—55 —(n+h) (a*x*— B+ h). (15)
w2I? o
The maximum of Y(k) exists for x = ky;, Where
2 \/ 4zh 16)
o a(dn+h)’ (

Y(x, k) for n = 1 is shown in Fig. 1. For & > h, we have Y(x, 1) < 0, i. e. Q(x, h) is a real
quantity describing the precession frequency of spin waves. For 4 < A, frequency Q
is an imaginary quantity in the x; < K < k, domain. In this case solutions of the set of
equations (8) are proportional to exp (\/ |Y|?) i. e. they grow in time. The quickest growth
is observed for k = ;. These solutions describe the process of inhomogeneous magnet-
ization creation, i. e. the creation of domain structure. The point of phase transition is
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determined by condition ¥Y(ko;,k.) = Yo = 0 allowing to determine the critical
field A (L)

4
h(L) = - = \/ — n

h< he
h> he

Fig. 1

By means of (16), (17) one can obtain period 4 of the domain structure for L > L (0)
and & 5 A.:

2
1=

Ko1

I, (18)

:/oc(47r 7 l_f)
472B

Previous considerations have concerned the static case with regard to external magnetic
field 4. According to (1), let us now put

h—> h(t) = h+dhysinwt; h 2 h(L); 6hy <h. (19)
From (13) one can receive

Y(h+06h) = Y —(2uq*— f+2h+4m)dh. (20)
0
If we substitute (Myg)™! e for iQ in the last two equations of system (12) we obtain
1 _,0m,
my, = Z{qz(MOg) ! W _47U€kmz} s

om,
ot

1 ¢
p=-— {4niK(Mog)_1 +4nik(o¢q2+h)mz} . (21)
) .

where

K2
4o = q* (ocq2+h+4n ?) . (22)
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0
By means of (21) (and-iQ — (Mog)™ Ft—) the first equation of set (12) has the form:

*m q* 9(6h) om
IS D2 P (M) Y +(20g® — B+2h +4m)Sh
T o g T Me®)’T+(ug” = 2hrdn
4 4dnxkMyg 0(6h)

4o ot

}m, = 0. (23)

After introducing the following notation:

2
m,(f) = (7) exp {q jh % sin a)t} , (4)

0

and
0l = —(Mog)Y, a = 4g'4nMogrkadh,,
b = {(24¢)"'¢*w® +(Mog)*(2xq* +2h — B+ 4m)}dho

- 3
s=w52\/a2+b2; 9=arctgg; T=t+ —, (25)
b o
equation (23) has the form
d2
d—;f— +w3(1—ecos o)y = 0. (26)

This is Mathieu’s equation. Its solution and m,, ¢ given by (21) should satisfy the boundary
conditions (9), (10). Near the phase transition point, i. e. for 2 2 A(L), ¥ & Koy, L > L (0)
the boundary conditions have the form [1] (m, = 0),-+1, i. €. are identical to Kittel’s
conditions [4] for the pinning case. According to (14) they are fulfilled for k, = nn/L.
By means of (25) and after taking into account these assumptions, we shall obtain
approximate expressions for % and ¢

4n+p
1Yl

w2 = —(Mog)Y; &= Shy. 27

Condition & < 1 is a criterion of the smallness of the variable magnetic field amplitude

Y
5h0<'| |

. (28)

The condition & < 1 is fulfilled for very small quantities 64, &~ 0 near the phase transition
point |Y|~ 0.

The solutions of equation (26) can be found with the aid of the asymptotic method
[5]. We shall only present the solutions for first parametric resonance frequency, i. e. for
o & 2wq. From (27) it follows that wy ~ \/ |¥| and resonance frequency w, = 2Myg \/ |7}
< 2M,g for hz h,. In this case the parametric resonance can appear for very low
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frequencies with regard to Mog. The solution of equation (26) in second order, with regard
to & approximation, has the form

[ Asw,
(1) = A cos 7r+9 - — cos (3 wt+6) (29)
8 -
(»+3)
where 4 = A(t), 6 = 6(1). Let us introduce the following notation:

0l
u=Adcosf;, v=Asinb; Aw:wo—?,

A=ul+o?; 0=arctg£u. (30)

Magnitudes u(z), v(z) defined by (30) satisfy the following autonomic system of equations:

du el 2o+ )
_[ 0 L Awt (00 + @)@

T 20 o \b >
_ ] 32{ @0+ -

A

dv £we &4 (wo + ),

Lo -2 e
dt 2w w
32 COQ+ '?

The solutions of the set (31) have the form:
u(t) = C,5+Cre™ ™,

€y

1 (&¥(wo+o)w,

SCO(Z)I St -8t
v(7) = ] +Adw— Eys | (Cie"—Cre™™), 32)

“32 (wo+ %) ]

where § is the root of the characteristic equation of system (31)

2 4 2 241/2
g'w & (wot+w)w
0 [ oy E@ot @) ]

20° 1)

The stability domain of solutions (t) of equation (26) is defined by condition S = i|S],
i. e, by

(33)

) & &2 ) P g2
By e L (34)

< H F
2w, 4 64 2, 4 4 64

The periodic solutions having the period T’ = 4n/w are a particular case of solutions of
Eq. (26). It occurs for S = 0. From this condition the dependence of frequency w on
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parameter ¢ follows. In the second order with regard to the ¢ approximation this dependence
is as follows:

e S5e\7! ‘
=200 (1% -+ ) . - (35)

For the same case by means of (24), (25), (29) we can obtain the following dependence
of m, on 1:

oh i 3
my (1) = Ay exp {471 -:,B sin (w'c—&l)} [cos (—? 1:+00) - I% cos (760 'c-i-HO)J > (36)

where A,, 0, are constants. The nonstability domain of solutions y(7) of equation (26)
is defined by condition S = $* 1. €.

8 &2 1) e e?

| (AT S S e U . A 37

4 64 2w, 4 64 S

Expression (37) defines the range of frequencies of the external magnetic field for which

the parametric resonance phenomenon appears. The phenomenon appears for fixed

quantity Aw, if the external magnetic field amplitude 64, satisfies (in first order approx-
imation) the following condition:

_avir
Myg(4n+p)

If we take into account the linear approximation of the equations of motion only, we shall
not be able to describe the behavior of the solutions Eq. (26) in the nonstability domain.
The growth of the quantities of functions y(z) or m,(7) is limited by nonlinear terms in the
equations of motion. The main nonlinear term appears [1, 3] in the first equation of system
(8) or (12). This equation with regard to m> approximation has the form:

|do). (38)

[

om; GF me SGE g
Mog) ' — + —-oz(~———+—— —B+hpm 4L pmi+ —— = 0. 39

( Og) ot ‘ 6xz (3Z2 ﬂ L) B oz ( )
In our considerations we have not taken into account the dissipative terms in the equa-
tions of motion (2). An additional condition for the variable magnetic field amplitude is
obtained after taking into account the weak damping. For @ = 2w, the parametric
resonance appearance condition is as follows:

44
ohy > h, = —, (40)
B

where A is a damping decrement and /%, is a threshold amplitude quantity of the resonance
excitation. For @ = 2w,/k (k = 1,2, ...) the threshold amplitude is proportional to \’7 4,
i. e. it grows with the growth of number k. In Fig. 2 the domains of Mathieu’s equation
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nonstability are schematically presented as shaded areas in the (w7, &) system of coordi-
nates. From (27) the following relation is implied:
swh = (4n+ B) (Mo8)*5h. 41)

The relation (41) is shown by the dashed curve in Fig. 2.

Fig. 2

~
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