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SMALL-GAP EXCITATIONS OF A SUPERFLUID FERMI LIQUID
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The density-density autocorrelation function for superfluid Fermi liquids with BCS
and BW pairing is calculated in the acoustic limit and at 7 = 0. We assume that some of the
interaction harmonics in the particle-particle channel can be suitably close to that in the
pairing channel. This assumption leads to the appearance of collective excitations with
a small gap. Our results allow us to establish additional stability conditions for superfiuid
systems. The case of only one harmonic, close to that in the pairing channel, is discussed
in detail.

At vanishing absolute temperature and in the collisionless regime the physical
properties of a superfluid Fermi liquid are well described by the effective interactions
of two types: the effective interaction in the particle-particle (p—p) channel, connected
with a given type of pairing, and the effective interaction in the particle-hole (p-h)
channel, i. e. the ordinary Landau function. In all calculations in this papér the LMC
method is used. This procedure, for systems with S-pairing, was previously given by
Larkin and Migdal [1], and subsequently extended by Czerwonko [2], to systems with
BW-pairing. This pairing has become more interesting after the identification .of such
a state with the B phase of superfluid *He [3]. In the case of *He we have two superfluid
phases and the gap matrix changes its angular dependence and hence, it is possible that
our results and the results of [4] ate connected with a real physical phenomena. On the
other hand Foulkes and Gyorfly recently suggested that P-pairing or a mixture of P and S
pairing appear in very pure metals Rh, W, Pd in the mK temperature range [5]. Also
in this case higher harmonics of the (p-p) interaction may be important.

In the LMC approach, which gives good results in the acoustic limit, the gap
equation plays the selfconsistent role. If we know the gap matrix we will get some restric-
tions for the (p-p) channel [2]. For systems with BCS pairing some of the higher harmonics
of the (p-p) channel may be suitably close to the zeroth or first harmonic. The appear-
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ance of higher harmonics, suitably close to the zeroth or first, Ieads to small-gap excita-
tions [4]. :

In our paper we will discuss only the spin-independent autocorrelation function.
Similar calculation for spin susceptibility has been performed by Czerwonko in papers
[4, 6]. Our formulae for the autocorrelation function will be obtained at zero absolute
temperature and for the acoustic limit, i. e. @, kv <€ 4, where v denotes the velocity of
quasiparticles on the Fermi sphere, and 4 is the gap energy. We discuss only the case
of a finite number of nonvanishing harmonics.

In the general case, independent of the type of pairing, we have the following graph-
ical expression for the correlation function av(0)S®(k, w)
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where the effective anomalous vertices Iy, 7 (5 are lined vertically, the effective normal
vertices are lined horizontally and v(0) denotes the density of states on the Fermi sphere [2].

Let us start from BCS systems. Equation (1) in its analytical form, together with
the equations for the normal J, vertex and the anomalous 4, vertex, form the complete
set of equations. We have

Sk, w) = (T V[LT (P~ OF (—p)+2MA(2) 3,
Ty(B) = T3(P)+<A(pP) [LT (p) — OF o(— P)+2Mi(p) D3,

~
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‘ p

The circumflex over a symbol denotes a unit vector directed along a given vector and
brackets {...); denote the averaging over spherical angles. In addition, A(pp’) is the
spin-direct part of the Landau interaction and f3,(pp’) is the spin-antisymmetric part
of the (p-p) interaction (see Appendix A). We will derive only the density-density
autocorrelation function S°(k, w) = S(k, w). The poles of the S*(k, w) for the vector
vertices @ and b are the same as poles of S(k, w) for both BCS and BW types of pairing
(see Appendix C). The anomalous vertices & (1y g (2y» With two incoming or outgoing
lines, are connected with A as:

j‘(l) = ’——iO’y/l, f(z) = +i0'y;t,

as a result of time-reversal invaiiance.
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It is obvious that the most interesting case from the physical point of view is the one
with only two harmonics, suitably close to one another. This is equivalent to the case of
two nonvanishing harmonics, at least in the acoustic limit. Hence, we restrict ourselves
here to the detailed discussion of this case. The general discussion is given in Appendix A.
For the present case, we have to solve a system of two linear equations

oho+Cohy = —00T®, bydo+asd, = 0, 3)

with formula for o, a2, b,, ¢ given in Appendix A. From (3) we obtain the function
S(k, o)

. T o,
S(k,CU) = — D—O = 5‘/1,0, Dj = 1+Aj,
0
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Sk, 0) = 5 Dok*v*
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where , kv are taken in 24 units. For |In —2—‘ > 1 we obtain the formula previously
r

obtained in paper [2]

T*D
St @) =% 2y eapp K
Formula (4) yields two branches of excitations
207 = S2+k2(V + V) £{[05+ K07 (V: - V)T +4Uk 2, ()
where

A4
83 = Dy In P Vi=4Dy%D;+4D;), U = 3%DoDiD,.
2

The nonlinear dependence of e with respect to k in the whole acoustic regime is connected
with the appearance of two units of distance if two harmonics of the effective interaction
in the (p—p) channel are suitably close to one another (cf. [6]). For k*v* < 62, i. e. in the
acoustic regime but with regard to the energy gap 6%, formula (5) gives

(1)2 = ':]);“ kzszoDl (63)

— the well known sound branch spectrum, and

A
w? =D, In— +1k*’D,(4D,+2D3) (6b)
ra
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— the small-gap excitation. From the general formulas given in Appendix A it follows
that for very small £ each harmonic, suitably close to that in the pairing channel, leads

to a small-gap excitation of type (6b).
For the systems with BW pairing the equations and results are quite similar. In this

case the system (2) has the following form [2]
Sk, ®) = LT (p)— 0T (—p)—M[T(D), (6P)]+ D3
T() = T2+ CAGP) (LT (3)— 0T =)~ MIT ), G5+ D3 ™

L . 26\ . - ”
T(p) = <f t(pP') {(N +In f) T(p)+0(ep)YT(P)) (6P +2M(6p)T (p)}>

where T(p) = k,0” = 0”%, and &; is the spin symmetric part of the anomalous vertex
7 - In analogy to the BCS case, we will solve (7) for the two harmonic model, i. e.

ty(0?*—% kv 2D0D1)'|'t3(—£k2 ’DoD,)+ ho(@® — % k*v*DoD;)

’+h2(—% kZUZDoDl) = (Uym,

2

52
—3t+2 t3+ho(—F5 K0’ D)+, [b_ —1 K4 D +3 Ds)} =0,

2

Y| w
+3t— 2ty +ho(—F5 K 2D1)+h2|: In— + .~ -+ K (3D +% Ds)J =0
r3 2 '

1[5 K0°G+3 D3]+ (=5 1)+ ha(—5'r K*0*D3) = 0, ®
where @, kv are taken in 24 units. The meaning of the symbols and a more general discus-
sion of this case is given in Appendix B. According to (4), the autocorrelation function

has the form

Y ad

J
Sk, w) = 5 k*v*D,

4
o’—31n — + 2 k*v?D,D,
3
- '(9)
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((DZ —':]‘;‘ kZUZD()Dl) [wz —% In r_ -3 Dzkzvz("' Dl + Ds)] —]_is‘ k4U4D0D%D2
3

X

Formula (9) yields the two branches of excitations

207 = 824 K22V +V2)+ {[62+ k20 (VE— VO +4U' K v*}2, (10)

4 . . .
where 62 =3D,In—, U’ = 4—45—D0DfD2. In the acoustic regime, with regard to the
rs

energy gap d;, i.e. for kv <3, we find
o® = 1 kK*v*D,D;, (11a)
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i. e. the same result as (6a), and

A
w?*=2%D,In ey +4 k*’D,(% D, +% D3), (11b)
3

A
In —
3

— the small-gap‘excitati"on branch. Also in this case formula (9) for = 1 gives

the well known result derived in [2].
In addition we can prove that all terms on the right-hand sides of Eqs. (6a, b), (11a,b)

are positive. From the Pomeranchuk inequality (D; > 0, [7]) we find that all terms propor-

tional to k2v? are positive. In order to obtain the suitable inequalities for 63, 63, we use the

spectral representation of the autocorrelation function S(k, ), following from [6].

We have

1 26(),,0]an0|2
av(0) (0+i6)* — w2y’

Sk, ®) = (12)

where ,, is the excitation energy of the n-th excited state and g, is the transition
element between the ground (0) and the n-th excited state of the k-th Fourier transform
of the density operator g, = O*. From (12) one can see that all terms near e
(m =1, 2, ...) in the series expansion of (12) are positive. This leads to the inequalities

4 A .
In—>0, In—>0. 13)
T2 T3
The meaning of these inequalities is very simple. They mean that the interaction in the
pairing channel is always stronger than in the remaining channels, cf. [6]. Conditions
(13) play the role of additional stability conditions for superfluid Fermi liquids, in com-
parison to D; > 0.
The spin-independent collective excitations with a small gap for BCS were considered
in paper [8], but without the Fermi liquid interaction. The discussion for spin vertices
is given in paper [4] for BW pairing and in paper [6] for BCS systems.

The author is very grateful to Professor J. Czerwonko for suggesting this problem
and for the numerous and valuable discussions.

APPENDIX A

We assume that the p—p interaction conserves independently the total spin and the
angular momentum. In such a case, this interaction is divided into two parts: first, s
which describes the interaction with vanishing total spin, acting in the BCS case, and the
part %, which is connected with the BW state, with the total spin equal to unity (cf. 2D.
Because of the Pauli restriction, the function £, (pp’) contains only even Legendre poly-
nomials .

n

fidpp) = IZO (41+1)f§ 2P 2(PP), (A1)
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where

26\t
f§-1,21=<ln‘—> s Fro =4,

Fay

and ¢ is the cut-off parameter [2]. The vertices should be of the form

7(p) = 212(21+1)9' WPikp),  Ap) = ;(41 +DAiP (k). (A2)

In the acoustic limit one can use the following expansions for the L, M, N, O functions [2]
O=—-L=%, 2M=-—w—ke, N=o*—(kv)’-1,

‘where @ and kv are taken in 24 units. After a simple integration over spherical angles
we find the following system of ordinary linear equations

T° o 1
Sk, ) = — — — —4,, where 7 = —[2],
D, Dy a
T° 4
T = — — —Owlo,
A
T =~ B'Z—I-w/"tzz, for1=1,2,...,n,

(4143)T 5141 = —kvQ2l+ 1) Agys 140~ kv2(1+1) A1 1A214 26
for [ =0,1,2,...,n, ' (A3)
ao/'|.0+60/12 = —wg_w,

bodoi—2+8ahatendy, =0, for I=1,2,..,n,

where
dy; = —D ln£—+wz—kzsz2
2j = 2j 2o
sz
2(j+1)2j+1) D,,D,;_
by; = — k22 _(J _)( J ) 25721 ,

4j+3 4j+1
= k22 2(j+1) (2j+1) D_ZjD2j+1

Crj = 5
2’ 4j+3 4j+1
V2 = D iz , (21+-——1)—2D -
WU 41| 4i—1 7T g3 TP

D; ="1+4;, A; denotes the Landau amplitudes
A(pp) = Y. 2+ DA,P(pp’), T15;# 0, for j=0,1,...,n.

J
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If r,; vanishes for-some index jo, then harmonics with indices higher than j, will not
appear in the autocorelation function. From (A3) we derive the general formula for the

autocorrelation function S(k, )

T® 3 o’ R,
Sk, w) = — —(1-3 — "),
DO DODl Qn

where
n—-1
. ~ (Yo Pst oo +P2m
R, = Yo ... P2 —k** E L2 T S +(—k4v4"{y2 7o 7 ryodd
(i V2i+202) 1 n even
=
n—1
. = 1
On = Vau - V2Vo— k0" E i glalo i +(—k4v4)”{ n odd
— Y2j+2V2j Yo+7V2+ ... +72, B €Ven
=
2 +h—% nodd
in n even,
. n+3 nodd
RES’ n even,
s Go 4j+1 4j+3 1 D34

H

N

- 5 N s = {A; —
Yo =2 pic V2T 25501 2742 D,,DY;-; Diys

1
2
D3

for j=1,2,...,n The singularities of S(k, w) depend on the n parameters In —
r 2j

4 .

D,;In —|, we obtain

(j=0,1,2, ..., n) on the energy scale. For very small k ie k?? <
rzj

excitations with a small energy gap:

4
In—| <1 (A5)

rzj

4
w? = Dy;In — +k*%*Vy;, for
rzj
APPENDIX B

Let us solve the system of Egs. (7); corresponding to the BW case. The vertices should
be of the form

T(p) = ; @1+1)7 P (kp),

T(p) = ko ; (4l+3)t21+1P2,+1(l%ﬁ)+ﬁ&;(41+1)h2,Pz,(icﬁ).
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Moreover, the p—p channel should contain only odd Legendre polynomials

AAy

fE(pp) = Zo (41+3)f< 12+1P2+ 1(1%’0:

28

ar+1

f£.1,zz+1 = (111 ) with ry = 4, cf. paper [2].

We discuss only the case where
fE1,2j+1 #0 forj=0,1,..,n, ffl-,zj;vlv =0 forj>n.
Performing all integrations over spherical angles we obtain the following system of linear

equations:
\

T A,
To=—+ —w(t1+ho)
Dy
- Ay 2141 21
T o = D—ZICO m tyyp1+ —— 4l+1 ty- 1+h21 o for I = 1, 2, coop 1S

812 +121+3 21 21+1
T = 4 kv — tyy_
20+1 21+1 U[(4l+1) (41+5) 21+1 4l+1 4l+3 21-1

2(1+1) 21+3 2I+1 2(1+1)

= ey + h for I =0,1, ..,
4143 M4s 2 gt s 2"“’] & "

0T = t,(0° =32 k*?DyD,) +t3(— 2 k*v*DoD ;) + ho(w® — 3 k0> DoD,)
+hy(—% k*v’Dy D)),

5L k2022(1—1)21—1 21 +il_t 2
e i 41—3 41—1 414177 4127 qpr

2042 20+3 2041 2-1 20 '
— k% ? —— 1+ A By K —— — D)
+t2’+3( Vi3 4z+5)( *t a1 2’“)+ i 2( 2= 14l+1 2-1

. A N 0 kK ( 417 P +(2l+1)2.D 1
_.n —_— - - R ——
+ny TR DI 4l+1 20-1 A3 A ]

L2041 2042 .
k2 ——D , forl=1,2,..,n,
+h-,2”2-( e 2’“) o "
=4 g 2 2+1( 2042 2A+3 243
=t | TRV a3\ aes )| T args T apqs R

2043 2145 2(1+3) 214+1 21+2
__k2 2 1 A h k2 2
+’2’+5< U AIE5 4l+7 4149 2”3) 2’( A+3 4145 2t



439

: A * kK*? [(4(1+ 1)2D Q1+3)* )
+hat2 [_ n7'21+1 + Do, alxs\ a3 Curit i Dass
2143 21+4 :
2 p—
+h2(l+2) (—kzv 4—_1__l_—§ 47:_"‘7 D2!+3) D for [ = 0, 1, 2, ooop (Lo (B].)
7°  w
S(k, = — — + —(t;+hy). B2
(k, w) D, Do( 1+ho) (B2)
From the system of equations (B1), (B2) one finds that for |In <1, the
Tap41
excitations with a gap should be of the form
A4 2043 r _
Q)z = D2(1+1) lﬂ 111 2t +k202W22(l+1). (B3)

Favr  HES5 . 7h4;
For the velocity of these excitations we find
W22(1+i) = I’722(t'+1)“Vz'(21+1)a for 1=0,1,2,..,n

Note that the term VZZ(H 1y was defined in the BCS case and for the term V;fH 1y we have:

- L 21Q21+1) 4 2142 21+3 2l+3A }
= = n —_—
2(+1) 2(1+1)(4l+1) (41+3) Fares 4145 41+7 4149 2i+3 )
2l+2 2l+3 r21+3 A : 7'2l+5 e
—— —— Dyyiyin In——{1In
41+5 4147 Fore1  Fares Far+3
I 20+1 O
+ i_ <1+ ; A21+1> ln r2l+3 (ln Z‘ﬂ)
47141 41+5 Pore1 \ . Fa—g
2141 2142 .
S Sl o i e | B4
" 4113 445 21+ 1421+ 2 (B4)

The term in curly brackets in (B4) does not appear for / = n. As we have shown there

F21+3
appear also the term In———, not only In
a1+ Fart1

APPENDIX C

In this appendix we check the gauge-invariance conditions for vertex functions in the
acoustic limit for both BCS and BW pairing. Such conditions were given for BW pairing
in paper [2]

~k, 7 s+wT = ——, (on the Fermi sphere)
a

_ka a+w’f = —0op, (Cl)
a
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and in paper [1] for BCS systems

w—kv N A4
-k T, t+0T = , —kT,+oT =—, (C2)

a a

>

where 7, T are scalar vertices, whereas J,, T, are vector vertices. The charge of quasi-
particles with respect to an external field is equal to a7 ® = 1. The equations for the
quantities

X=-kJT,+07, Y=-kT+oT,
are the same as systems (7); (2) (without formula for S(k, w)), if we substitute X for
T, Y for T, and 7°(p) = (w—kp)/a. Using the technique described in appendices A, B
and the Landau formula for the effective mass: m* = mD,, one can easily prove that

w—kv
X =

. 4 .4 ..
, T=22(BCS), ¥=2Z16pBW
a a a

are unique solutions of such equations. From (C1), (C2) we find that vector and scalar
vertices have the same poles. This is the reason, why we can discuss only density-density
autocorrelation functions.
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