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MODIFICATION OF THE “AMPLITUDE DENSITY FUNCTION”
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A modification of the numerical method of Secrest and Johnson for solving integral
equations appearing in collision problems with a local interaction potential is presented.
It arose from a combination of the well known “amplitude density function” formalism and
the “homogeneous integral solution” method of Sams and Kouri. It is shown that this
modification leads to considerable savings in the computations.

1. Introduction

~ In 1966 Secrest and Johnson proposed [1] the “‘amplitude density function” formalism,
describing the nonrearrangement scattering problems, the main idea of which consists
in replacing the scattering problem with many separate problems with weaker inter-
action potential. Within this formalism the authors have developed a numerical method
which was next applied to the investigation of the collision between a structureless particle
and a harmonic oscillator [2]. They also considered the collision of a structureless particle
with a rigid rotator [3]. The applications of this method to more complicated collision
models are not known in the literature. This is understandable because of the large amount
of time involved in‘computing the matrix inversions needed. However, it seems to be
possible to improve this method. The present work is an attempt in this direction. We
believe that our results make the “amplitude density function” method more suitable
for solving collision problems, and, in our opinion, it should be more exploited because
of its large numerical stability.

In Section 2 we summarize the main points of the “amplitude density function”
formalism. In order to solve the integral equations which occur there we apply the procedure
of Sams and Kouri (Section 3). As a result, we arrive at the numerical method described
in detail in Sections 4 and 5.

* Address: Instytut Fizyki UMK, Grudziaidzka 5, 87-100 Torun, Poland.
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2. Formalism of the “amplitude density function”

The amplitude density functions are defined by the following formula:
Fi'(x) = [ g207())V (x, »)¥*(x, y)dy,
where ¥*!(x, y) is the solution of the collision problem
[H.(x)+Ha(x, )+ V(x, )~ E]¥(x, y) = 0 ¢

satisfying the outgoing wave condition. By H,(x) we denote this part of the complete
Hamiltonian which depends only on the distance x of the colliding objects. For the
remaining variables we use y. I is the index labelling the solutions of Eq. (1) without the
interaction potential V(x, y). The signs “+” or “—” mark their forms as @(»)m(x)
or &(y)my(x), respectively. @;(y) are the eigenfunctions of the Hamiltonian H,(x, y)
to the eigenvalues E,;, n;(x), m;(x) are independent solutions of the equation

[H(%)+E;;— E]R(x) = 0, 2)
and g is the determ_inant of the metric tensor. The amplitude density functions can be
obtained as the solutions of the integral equations which may be written in the matrix
notation!

F(x) = [ n(x) ] Vo) - jFi(x')én?(xaﬁ(xﬁ(x)dx', ©)

m(x)
where
[FX@)]y = Fi'x),  [m)]y = dimi(x),
[n(x)];; = &imi(x), [l = 6ycin  [V(X)]ij = Vis(%),
Vii(x) = [ g 270V (x, »)@(y)dy,

¢; are the coefficients in the appropriate Green’s function of the operator H;+ H,—E [1]
and x_(x.) is smaller (bigger) from x and x’.

The infinite dimension of the matrices occurring in Eq. (3) is reduced for practical
applications to a particular integer N, whereas the infinite integration range with respect ‘
to x is replaced by a finite range S. The knowledge of the amplitude density functions

enables one to determine the reflection, R¥' = [R*];;, and the transition, 77" = [T*];,
coefficients from the formulae

RE = f F(x)c [ ;((’3)] dx, “
T = in(x)é [ @(")] 5 )
n(x) '

1 Eq. (3) as well as the majority of other equations in this paper are in effect two equations condensed
into one. For “+4” one takes the upper function in the square bracket and for “—” the lower one.
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These coefficients determine completely the asymptotic forms of the functions Y= (x, »)

lim ¥ (x,5) = qsi(y)[;’;j((ff)]_‘— Z [;’; ] 2,)n ),
im w4, = 20| M9 ][ o0mco

Therefore, they contain full information about the investigated collision process.

The most important consequences of introducing the amplitude density functions
for description of the collision phenomena are connected with the validity of the following
relations

F*¢ = F*4F*P+a*F “+b*F*%, . ©
_ B _ N T—A B §+B~»
Ric = .RiA-l'RiB'i'ai I:.—R—A] +bi I:T+B s - (7)
o . i a R‘_A T+B
TiC= TiA+TiB+ai[T—Ai| +bi|:R+B]' (8)

The amplitude density functions F*¢, F¥4, F*¥ are defined as the solutions of Eq: (3)
in which V(x) has been replaced by V°(x), V*(x) and V"(x), respectively, where

[Py = { Viy(x)

where o = A, B, C are the intervals of the variable x satisfying A+B = C. T he coefficients
a* and b* are the solutions of the systems of linear equations

* = BB~ [T‘] 9
- T—B ’ ()

‘Zi . _Eil_{—‘A__ Th{ B 10
= 74 |- (10)

The matrices RE* and T** are defined analogously to R* and T*. Due to (6)—(8) one
can obtain the functions F*(x) by solving the 2(M+1) integral equations for F**(x),
where {¢;} (i = 0, 1, ..., M) forms a partition of the interval S into M+1 subintervals.

It is worth noticing that the presented formalism does not contain any restrictions
on the partition of S (i.e., on the length and number of the o;). This fact will be exploited
in the next section concerning the determination of the functions Fi“(x)

for x€a,
for x ¢ o,

3. Application of the “homogeneous integral solution” method to the amplitude density
functions

The integral equations for the amplitude density functions F**(x)
F¥e(x) = [%((’;))] V(o) J FE(Yom(x (e, VA(x)dx, an

X1
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where x;, x, are the lower and upper bounds of the o interval, can be written in two

equivalent forms
F¥(x) = [%((J;))] Vi(x)— fFi“(x')E[ﬁ(X')ﬁ(x) —m(x)n(x')]
x Vo(x)dx’ — :j Fro(xYem(on(x 7 (x)dx’,
and 1
FEe(x) = [ %((’;)) ] V4(x)— fufi“ X Ye[m(xn(x")— m(xa(x)]

X V(x)dx' — T FE(XYem(x)n(x)Vi(x)dx'.

Following Sams and Kouri [4] we seek the solutions of this equation as a sum

F(x) = FE%(x)+ FE%(x).

Choosing the infegral equations

FEo(x) = n(0)7°(x)— I Fo()e[m(on(e) — m(x (o) [P G,

F5*(x) = m(x)V"(x)~ Ix Fo "(x)e[m(x")n(x)— m(x)n(x")]V*(x)dx’

(12)

(13)

(149

(15)

(16)

for defining the “homogeneous integral solutions” Fj*(x) we get (by inserting (14)—(16)

into (12), (13)) the following integral equations for Fi*(x)

Fiox) = — | Fyo()elm(one’) = m(e ()7 dx’
R + Fe) omG e Vs
Fro(x) = — | Frie)elm(x i) — meon() 7 odx’

= Fa )+ Fro () JemGome) (o)

The functions thus defined Fi%x) and Fi“(x) are connected by the relation

Fi) = CHF30)
in which C** are constant matrices satisfying the equation
T+ = —(A+C*TE

!

an

18)

(19)
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hence - i
Eia — _Toiu(l_‘_‘To:ta)—l’
where
Te= To”(xl)a T * = Ty (%),
T %(x) = ju Fg(x"Yem(x")dx’,
To (%) = [ Fo*(x"en(x")dx’. (20)
Inserting (19) into (14) we get the following relation for the amplitude density functions
'F:l:a(x)
F*(x) = (@*97'F5*(x), (21)
where
(Qia)—l = '1"+6ia,
hence :
Qia - T + Toia’
and analogously for the matrices R** and T**
Tiu = (Qia)—lToia’ (22)
R** = (@*)7'R3", (23)
where .
Rs*=Rg(x), Rg* = Ry“(xu),

RE*x) = | F*(x)en(x')dx',

R3°0) = | Fa " Yem(x . @4

X1

These relations are of fundamental importance for the modification of the numerical
Secrest-Johnson method presented in this paper. They indicate the possibility of replacing
Egs. (11) by (15), (16). Applying a procedure analogous to that described by Eastes and
Secrest [5] one can solve Egs. (15) and (16) with a relatively small expenditure of effort.

5. Numerical method

It is convenient to write the equations for the functions Fz*(x) in the form
Ttae — I —ﬁ(x) TH+)_ pta _(x) 177
F§'9 = 0 (x)[ﬁ(x)] 7o)~ R (x)[ o |70 29)

After preparing these equations for the numerical treatment and denoting by & = {xi}fio
the M +1 point set of a quadrature formula employed to the integrals in Eq. (3), by ;
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the weight of point x; in the quadrature used and by « = {x,,}i=, the L+1 element
subsequence of & (x;,p, = x,) we get:
1. for L>0

Fg(%y-1) = Q" (umier DXy ) V(Xu—i) — RS u(xu—k-}- M%)V (¥y-1)s (26)
F(; (X)) = Q_a(x1+k— 1)ﬁ(x1+k)—l7(>_§1+k) —R(; K14k 1)ﬁ(x1+k)7(x1+k)a 27N
for k=1,2,... L

and
F g K xu) - ﬁ(xu)v(xu), (28)
Fo*(x) = m(x)V(xy, (29)
‘where - e
0" (ur) = 1+ T5 (xu-s), ©(30)
0 (%14) = 1+ T *(X140), (31)
RS Gham) = %, 003 - )0, 32
RyGi) = 3 o1iFa e o ), €5
To+a(xu—r) = go wu—ifg a(xu—i)zﬁ(xu—i)’ (34)
Ty "(Xuer) = i wl+rf(;.a(xl+r)zﬁ(xl+r)" forr=1,2,...L (35)
i=0
and B ~
Q+a X)) = Q7 (x) =1, ) (36)
R; “(x,) = R5*(x) = 0, (37
Ty %(x,) = Ty “(x) = 0. (38)
2. for L = 0 (i.e., for x; = x, = x) '
FiY(x) = [%((’;)) ] V(). (39)
Nta —_ 1 Tta - E(X) . |
0*%(x) = T+oF5*(x)c [ ) ] ) (40)
Dt i Tk " —ﬁ(x) &
R3*(x) = oFF%(x)c [ﬁ(x):l. 41

In the formulae concerning case 1 use has been made of the fact that the integrands
in (15) and (16) vanish for x = x’. As a consequence of this we may find the functions
F#*(x) and the coefficients Ri* and TE* (see (20)—(24)) without matrix inversion. The
special case of one-point. sets « was considered by Secrest and Johnson. Therefore the
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formulae given in point 2 can be transformed into the equations of their method. In
particular one can show that two Egs. (21) can be reduced in this case to one equation
of the form -

A(x) = [1+oVE)em(x)n(x)]” ' V(x), 42)
where

— 71
AT(x) = 4°(x) = Ax), A*(x) = [[[,%((’3)]]_1 ] FEe(x).

To prove this we multiply Egs. (21) on the left:

[n(x)]™" ]—ia _[[ﬁ(x)]“] - _1[7:(x)][ [n(x)]™* ]_n
B [ = e 1@ L || e [P
and we calculate

— A1-1
[ e R = v,

[ﬁ(x)]'l] = _l[ﬁcx)]-_ {[ [ﬁ(x)]'1]<— [z(x)]— '-[m(x)])
[[ﬁ(x)]‘l @7 o | = L1 [\ [ | V9| 5
BN (- o [ [ A
L me ]} = {”“’V‘x’c [ ) ][ﬁoo ]}

G Ed Y

It follows from the above arguments that we can solve a given scattering problem
within the “amplitude density function” formalism in many different ways. They are
determined by a partition of the set & and in practice they differ from each other in the
number of the Nx N matrices which must be inverted. This is exhibited by scheme I which
contains the list of the needed operation for calculating the coefficients R* and T™ if
we have split the M+1 element set & into K subsets o; among which there are J one-point
sets.

Scheme I
Number of
Formulae matrix
inversions
1. The evaluation of 6(K—J) matrices Q**, Ry*
and T for «; formed by more than one element (26)—(38) —
2. The evaluation of 4K matrices T+* and R*%
a) 4J matrices for one-point o; (42), (4), (5) J
b) 4(K—J) matrices for the «; which contain
more than one point (22), (23) AK-J)
3. The evaluation of 4 matrices R* and T+ 9), (10), (7), (8) 2AK-1)
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For K=M+1({ = K) we ‘can ‘exclude steps 1'and 2b ‘but the whole numbeér of mattix
iniversions- has’ then 1ts greatest Valuie 3M+1. The: othercases involve léss calculatlons“
The amount of calculations necessary is proportional to the size of K. For these ‘réasons
the ‘most suitable choice for K is K-= 1-(J = 0) when scheme I reduces to steps 1 and 2b
and becomes equivalent (in the case when the trapezoid rule is used) to the Eastes-
-Secrest method [5]. formulated for the amplitude density functions. The use of too large
intervals «;, however, can lead to some computational difficulties, the details of which are
described in the next section.

5. Calculations and discussion

In order to show the most important practical implications of the presented considerat-
ions we investigated in some more details the model of a collinear collision of a homo-
nuclear diatomic molecule with a structureless particle. For this case the respective
constituents of Eqs. (1)—(3) take the form (see Appendix)

1 62‘ '
Hy(x) = PR (43)
"~ m ox?
o &?
H0)= = s+ (44)
c y
V(x,v‘ y) = Aefzﬂlxl(eﬁy + e‘—zﬁye‘qe—ﬂy)’ (45)
[ﬁ]tj =.5ije—ik¢x’ 4 B (46)
[n]; = o™, o (%)
Whgfé ‘ -
= [mE-E,)]'", , (48)
E,; = 2i+1, (49)
= et } — 1
ST T ok &

and @,(y) are the harmonic oscillator eigenfunctions. As a solution of this collision model
we have calculated the transition probabilities of the molecule from the state i to j with
a simultaneous reflection (P*) or transmission (P”) of the i 1ncommg particle through the
potential barrier defined by

i=j

PL,= { IR}, (50)

ky |
By = Sh 1T ay% 7t e ST
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These probabilities fulfil the relations
Z (PR +PL)=1 fori=0,1,..,No - "= (5

where No+1 is the number of open channels (i.e., the number of the molecule states for
which E,; < E), and

PR, = P, (53)
Pl_; =Pl : (54)

Eq. (53) expresses the detailed balance relation and (54) results from the symmetry of the -
interaction potential (45). These relations may serve as a ba51s for the Venﬁcatlon of the
calculated probabilities. The probabilities evaluated for m=1,y,=1 and dlﬁ"erent
sets of parameters E, 4 and f-are collected in Table I. The Table contains also the 1nfor-
mation about how the total interval S was partitioned into K subintervals ;. It is seen
that the resuits of the tests no. 2, 6 and 8 do not satisfy (53) and (54) which means.that
they are incorrect. The computations failed also in test no. 5 due to a computet overflow.
The origin of the difficulties can be understood if we compare the results of different
tests:

a) From the results of tests no. 2 and 3 it is evident that as expected the dlfﬁcultles
are connected with the closed channels

b) No. 1, 2, 9 and 10 illustrate the fact that a decrease in the range of the potent1al
improves the accuracy of the results

~ ¢) Finally if one compares the tests 2 and 4 or 6, 8 and 7 one can see that the stablllty
of the method depends strongly on how the interval S is partitioned. It is also worth
noting that with a proper partitioning-of S, i.e., when (53) and (54) are’ satlsﬁed “(52)
holds too.

Thus we see from the tests that the maximum lengths of the intervals o; which ‘_lead
to correct probabilities depend on the range of the interaction potential and on the number
of closed channels included in the calculations. For closed channels the solutions of Eq" 2,

ny(x) and my(x), become real exponential functions. During the realization of step 1 in
schema I these functions may have very large values which may lead either to a computer over-
flow or to almost singular matrices 9** Obviously in such a case it is impossible to calculate
the correct matrices R** and T*? The probability of such difficulties increases with the
lengths of the intervals o;. Thus in the frame of the present method the above mentioned
numerical instabilities can be always avoided by means of an appropriate partitioning
of the interval § into small fragments «;. Moreover, the partitioning of S enables one to
use an additional protection against numerical difficulties. This may be achieved by
modification of the numerical procedure which cancels to some degree the large arguments
of the exponential functions. This modification'is an‘extension, for sets «; with more
than one element, of the modification given by Secrest and Johnson [3].".It,vconsists in
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replacing the matrices n(x) and m(x) by :ﬁ“(x) and m“(x) given by
mi(x) = Z°m, n'(x) = (Z9"'n,
where
[Za]ij = §;5e(kiX,),

1 for k; real,
exp (—kix,) for k; imaginary,

e(kix p) = {

(x, is a point from ). The remaining quantities and some of the equations must then be
changed in the following way

e
Fga - [(7;)“— 1:| F;'a

RE® — —(Z;M_I: RE® :(Z;)a_l_

R = | w0

Fta _ _(Z;; 1_ Tte T(Z%a_ 1_

e N P

l2

ta _ | @) V] [@H7F

¢ ‘[ z: ] [@‘)"]

e[ )
Za o

~ o~ I_E+¢
aia - _biuR+a_ [_: :|

—a

N

(Wa«) -1 '1_:+§z - 1Wau:|

Tha _ _:iﬂi_—“iz—“i-l_m_ A
o e [W"‘*E'““‘W“*

W = Zo(Ze) 1,

It is easy to see that the effectiveness of the above modification diminishes with
enlarging of the intervals o;. In particular there is no reason to apply it in the case of the
partition with K = 1. However, with a proper choice of «; it may be quite useful.
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The difficulties considered here can be also overcome by the use of a procedure analo-
gous to that applied in [5]. Following Eastes and Secrest we may modify the matrices
R5*(x), 0**(x) and T *(x)

0*(x) = 5**(), (55)

R3*(x) = S*R5*(x), (56)

T3 (x) = S*T5""(x), (57)

during their numerical determmatlon by means of constant matrices ST which can be

chosen as
b = [Qim(xf)]_1>
where x; is a point from the interval «. These modifications, performed in an appropriate

number, prevent the occurrence of singular Q** and they leave the matrices T** and R*“
unchanged

@ _ (éim)—lﬁoia 1 (éia)—lﬁoia

@ _ ('Q_ia)—lToiu = (Qi:u' —17%0“'
In order to get the modifying matrices S* we have to do the matrix inversions. Thereby
the whole number of matrix inversions becomes larger than the number given in the
preceding section (see Table II). It should be noted however that the latter modification
does not reduce the large arguments of the exponential functions and these are the most
important source of the numerical difficulties. Therefore one may expect that in the

cases where a large number of closed channels is included this modification will be less
effective than the reduction of the length of the intervals a;.

TABLE II
Number of needed matrix inversions in calculation of the probabilities PR ~jand P, — j for the case E = 3.9,
m=1,4=4, =01, yeq =1, § = (—60, 60), M = 599
Secrest-Johnson method ‘ Present modification of Eastes-Secrest method
Secrest-Johnson method
K = 600 K=35 J=0 K=1
11992 I 142 1244°

B 2 these numbers are lgss. than indicated in scheme I because in our calculation we need the matrices
R- and T- only, P the number of modification (55—(57).

6. Summary

- *The presented numerical method of solving collision problems is formulated in the
frame of the “amplitude density function” formalism introduced by Secrest and Johnson.
According to this formalism a collision problem with an interaction potential V(x, ¥)
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given for an interval S of the x variable (the distance between the colliding objects) can
be separated into many mdependently solvable problems with the potentials ¥%(x, y)
(i = 1,2, ..., M) vanishing outside of the infervals o;, which form a partition of S into M
fragments. Although no restrictions are lmposed on the par’utlon of the interval S, Secrest
and Johnson chose for numerical applications only the’ spe01a1 case of intervals” o
containing one point. Thereby they avoided the necessity of solving any integral equation.
Though in this case the solving of the partial problems with the potentials ¥'* requires
inversions of matrices labeled by collision. channels only, the number of these inversions
is often very large. In the present modification of the Secrest-Johnson method other
possible partitions of the interval S are exploited and, for solving the integral equations
occurring then, the “homogeneous integral solution” method of Sams and Kouri is applied.
The dimension of the matrices which should be inverted remains unchanged but the
number of inversions can be considerably diminished. The numerical tests performed for
the simple model of a collinear diatomic-atom collision support this- statement. Here
we should notice that in all reported tests the number of matrix inversions needed in the
modified Secrest-Johnson method was larger than the number of inversions required by
the method of Eastes and Secrest, in which the procedure of Sams and Kouri is used for
solving the whole problem with potential ¥(x, y). However, as we have pointed out .in
Section 5 the present method is numerically more stable and therefore it seems quite likely
that it will be superior to the Eastes-Secrest method in cases where a large number of closed
channels is needed. A more extensive numerical investigation of this problem is certainly
desirable and it will be undertaken in the near future as a continuation of the present work.

The author wishes to thank Professor L. Wolniewicz for his interest in thls work and
several helpful discussions.

APPENDIX

The time independent Schrodinger equation for a collinear collision between a homo-
nuclear diatomic molecule BC and a structureless particle A (see Fig. 1) has in the center-

~

/L i o
e S A o A4
B p\‘c A %

C -8B center of mass

Fig. 1. Spatial arrangement of colliding objects

-of-mass coordinates the form

hZ 62 hz 62
ToM A 2ot FVa-c()+ Vac-a% §) | ¥ = EY, (A

where M is the reduced mass of the molecule BC, p is the reduced mass of the molecule-
-particle system and E is the total energy.

~
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We assume the following models of the interaction potentials
I‘713—C = '%' k(j;—j;eq)2
(Jeq is the distance between the atoms B and C in equilibrium)

Vac-a = Va—a+Ve-a,
where

S Ze"i"‘:‘”) for x >0
BoA T |de7PC4Y  for ¥ <0,
g Ao BG+Ey for x >0
C-A ™ 1de PC*"#Y  for X < 0.
Due to the transformation given by

X = 0x, J7 = 6y+)7eq’ j;eq e éyeq,

~

B=2Bl5, A=cAe P E =B TVyoos = Vecons

h 1/2 hkl/Z
o= MYZAz) e &= M2’

we may rewrite Eq. (Al) in the form

1 Fg2* =iig2 _
o a_yZ +y2+Ae_2ﬁlx|(eﬂJ’+e zﬂ)’eqe"pY) Y = qu,

where

where m = u/M.
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