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THE SHAPE OF EPR LINE IN MAGNETS WITH STRONG
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The method of orthogonal operators has been applied in the investigation of the EPR
line shape for the case of magnets with strong crystalline field anisotropy JD-! < 1. The
behaviour of the resonance line in the vicinity of the transition point is considered. The
parameters of the line shape depend on temperature and are expressed in terms of thermo-
dynamical correlation functions. The results for magnets with arbitrary value of spin .S in the
molecular field approximation are given and compared with those of the Tanaka and Kondo
theory.

1. Introduction

The shape of the EPR line in magnets for the case when the crystalline field anisotropy
of the type — D (S7)? is stronger than the exchange interaction has been investigated by
f

several authors [1, 2]. The absorption EPR line is usually observed in an external magnetic
field in which the rotating component can be determined. The shape and intensity of the
line can be represented as a function of temperature, constant magnetic field, frequency
and parameters of internal interactions. A well-known expression can be used [3]

Y
2'(w) = th 5 J G(1) cos wtdt, 1.1

where G(r) stands for the thermodynamical correlation function of spin operators
G() = 2<ST(OS™+57S* (1), (1.2)

and {...) denotes average over the great canonical ensemble. When the resonance is
observed at temperatures higher than the temperature of magnetic phase transition,
we can calculate the correlation function (1.2) with the use of Hamiltonian either in the
approximation of noninteracting spin [1] or in the molecular field approximation.
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The aim of the present work is to show how the existence of the transition point in
correlation functions describing the line shape can be taken into account for the case when
the magnet contains ions with an arbitrary value of spin S. The method of orthogonal
operators [4] which has been used in the thermodynamical description of the spin system
with exchange interaction and with the crystalline field-type anisotropy —D Y. (S5)? [5]

!

will be applied here for the calculation of the correlation functions describing the line
shape. The numerical results for the case of § = 1 and S = 3 for the Tanaka and Kondo
and molecular field approximations will be given in the form of appropriate graphs for
the intensity and for the parameters by which its shape is characterized.

2. The method of orthogonal operators
Now the method of calculation for function G(z) defined by (1.2) for the case of an
arbitrary spin value will be formulated [3]

5*@) = Ef S = ; oG L ~iHo T HI)Y, | (2.1)

where

Hy = —ugoho ; S;‘;D ;(sj‘)za
H; = — fZJfg(s;sg +8%S%). (2.2)
i 103

Hj, contains the Zeeman-interaction of spins with the external magnetic field and the
crystalline field anisotropy and H; describes the exchange interaction among spins. Further,
H, will be considered in (2.1) as a small perturbation. Let us focus our attention on. the
‘lower order terms. of the S}L(t) expansion

t
SF(t) = MSf +i g dt[H (¢ —1), 7S} ]

T 1’
- { dt’ 2;; dt'[H (' — 1), [H(t" —1), €7°7SFT], 2.3)

where
HI(T) = eiHoerI, HJ(; eae = [Ho, ...]. (2.4)

All expressions in (2.3) can be calculated easily if one expresses Sf in terms of i
operators [5] i. e.
S—1 N
S; = T Cij;+1,ua (S;‘)N= 2 ‘O‘NL'Q,a"

Sk
g=—8 =-S5

CS = VS(S+1)—ofa+1). @2.5)



We shall make useé of the commutations rules for LY,
[Lop L] = 07,(0pully =0l p)
and of the relation
HGL,, La = ealls 1,
where
&, = —lgoho—D(2a+1).

The expansion (2.3) takes the form

s5—1 ¢
S;(t) = 5 Cgelm{L{w 1,a+i,fdt/[H1(t'_t), S 1]
0

a=~-S

t

- i dt’ (j) dt'[H(t ~1), [H(¢" —1), Ly 1 J1}-

Using (2.6) and (2.7) Hi(t) can be given as

1

5— S
HI(T) = - jz Jfg( Z - (Ci)szaz+ 1,0 “Zz,u+ 1 + z “ﬁL{z‘,aL‘qﬁ,B)
g

o= - oa,f=~8
25-1 S—g-1 ]
___ S Sy 1S g —2iDgt I g 2iD,
fZJfg Zl s Ca+aca(La+1,aLa+e,u+e+1e +La+g+1,¢+qLa,a+le e »
or equivalently
25-1 .
Hyz) = Y  He%*r,
0==25+1

For G(¢) we get

G(1) = Go()+G1()+G,(D),

where
S—~1

Go() = Y, 1™,

a=~5

s-1
Gy(H) =it Y ILe*,,

a=—5
s-1  28~1 ¢ )
G,(t) = — ILe™ Y ol,|du(t—1)e*Pe,
a=-—5 ¢=—25+1 [¢] .

and the functions of the line shape will be defined by
0z = {[La+ 1,00 H] Loas 1},
Oz0 = {[[Let 1,HD H™D, Lygsa}>s
L = {Lot 10 Loar s
({4, B}) = 3 {AB+BA).
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-In (2.12) an approximation based on neglecting the tetm proportional to e; ' and e;?
was made and in G,(¢) the expressions with ¢ different from zero were neglected [1]. The
values of o, aig and I, can be calculated if one assumes that the correlations between
different sites vanish above the transition point

{AsBy) = {4sy {By>. (214

The above approximation is valid in the molecular field theory. From (2.13) the line shape
parameters can be derived explicitly

: s
Cot=2J[2 Y vL,+(CHA(L,~L,+ )] (2.15)
Cv=-§
63,@ b Z(Z i 1)']2(C:+g)2(c‘asz)2(La_La+ 1) (La+e_La+a+ 1)
+ZJZ{(C£+Q)2(C5)2(L11+Q+La+q-}‘ 1) -
+(C3s 1)2(C§—g+ 1)2La—g+ 2 +(Cs- 1)2(Casz—g— 1)214;1—@— 1) (2.16)

o2 = z(z—1)J*[2 i VL, +(C3)*(Ly— Lot )T

v=-—§

4+ 2J2[(C54 1) Ly 2+ (CH (L + Losv) +(C5-1)*Lo—4]

S
420 Y VAL, +(C Ly~ (a+ DLy )], 2.17)
v= - g
I, = 2 N(C)*(L,~L,+,) cth k—T— : 2.18)

where
I‘a = <qu,a>3 a = _S’ <oty S

can be calculated from [5]

¢S-—l )—1
Ls=(1+ ,
: ( z 1'|_¢S—-1
k=1 i=1
5—-1
L,=L¢ | —?L «=—S5,..S—1. (2.19)
| 1+¢;
Functions @, are given by
$, = (e Po—1)7', B =(kT)7. (2.20)

In the approximation of noninteracting spins (high temperatures) w, equals

W, = &, = —Uugoho—D(2a+1). (2‘2,1)
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In the molecular field approximation one should assume

0, = —ugoho— D(2<x+1) 2zJ Z vL,. ‘ (2.22)
v= -5
In both (2.21) and (2.22) G(r) can be approximated [1] by
S 1
G = Y T,exp[i(w, +Awa)t] exp [—3% 0701°]+gs(1), (2.23)
a=—5 2

where dw, and I, are modified position and intensity of the resonance lines
25-1 -

1 O'Z,o g
4o, = —0,— Z 20D ’ (224)

o=—28+1
¢¥#0

28-1

~ a2
I¢=Iz(1— Z 4—(;;%5), (2.25)

g=-25+1
e¥0

and gg(#) describes the satellite lines with the values of ¢,-+2Dp independent of temper-
ature and spin correlations
S-1 281

g5 = Z I

a= -5 e=—25+1
e#0

The absorption line x” calculated from (2.23) on the basis of (1.1) takes the form

2

a Iy
49;;2 exp [i(e,+2Dp)t]. (2.26)

" ﬂw
(@) = th 5 Ho(®) +Is(w)], .27
where
Iyw) = Z \/ 207, exp [ (0, + 4w, +w)?[262 ] (2.28)
a=—S .
describes the line shape and
S-1 251
_ » Oas |
Ig(w) = L. joigs d@ e +2D0), (2.29)
a=—§ g=2-28+1
2#0

describes the satellite part. The results obtained concern arbitrary spin values and enable
us to calculate the parameters of the line shape o, 6%, in the molecular field approxi-
mation.
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3. Numerical results and discussion

Formulas (2.27) and (2.28) can be used for the investigation of the dependence of x”
on the parameters and temperature. Let us start by stating that the shape of the absorption
line depends strongly on parameter JD-*, which determines the ratio of exchange inter-
action and uniaxial anisotropy. At high temperatures even small changes of this parameter
(e. g from 0.05 to 0.08 and 0.1) cause significant changes in the line shape including the

disappearance of the lateral maxima (Fig. 1). We have assumed S = 3 to make it more
25} a p=01 i
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visible. This has been derived in the molecular field approximation but we have found
the same behaviour in the Tanaka and Kondo approximation. In the absolute scale the
absorption lines derived in the molecular field approximation are narrower and lower
than those from the Tanaka and Kondo approximation (Fig. 2, S = 1) and in the relative
scale (the line normalized to unity) they are always narrower, independent of the spin
value. We have also found that as a function of temperature takes on higher values in
the molecular field approximation for the arbitrary magnetic field (Fig. 3, pugofo/D = 8.1).

The position of the main maximum (®mp)umra also is a function of temperature
(Fig. 4); up to temperature k7/D = 8.1 it is shifted toward higher fields and at temper-
atures above that value it is shifted toward lower magnetic fields with respect to the values
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calculated without taking into account the existence of the phase transition point. This
is due to a change of parameters Aw,, 0‘:,0- It is visible in Figs. 5 and 6 where the behav-
iour of Aw_, and o2, versus temperature is shown (ugoho/D = 8.1). dw._,, dw, and
‘az_%,o, , 0';,0 for different values of the magnetic field behave similarly and the curves
derived within the MFA always lie below those of the Tanaka and Kondo approximation.
In the recapitulation we can say that in the EPR theory taking the molecular field
approximation into account for the case of magnets with JD-! < 1 causes the resonance
lines to change their shape and position. The line becomes narrower and the difference
between theory and experiment [6] should be attributed to the fact that an important
dipole-dipole interaction has not beea taken into account.
The limiting values of the line shape parameters o, and 62, do not depend on taking
or not taking the molecular field into account. For example, when T — 0, L, determined
by equations (2.19) takes the values

Ls = 1, LS-'I = .. = L_s ="0, (3.1)
and _ »
05-1r=0, oi_,=..=0c'5=22JS, (3.2)

0's_1_0 ; 0, 052—20 =L eo= O'Z_S'o = Z(Z+1) (2]5’)2. (3.3)
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At high temperatures we get
LS = Ls_l = ,.. =

a; =0, a=-S,..,8-1,

(3.4)

(3.5
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and
o zJ?

%0 = 5511

[<cs+ D 2CH +(C ) -4
| 456+DES+D)

= ] o= -8, ..,8S—L1 (3.6)

The results which we have obtained are a generalization of the results of Tanaka and
Kondo for the case of arbitrary spin value S. The existence of the molecular field in a
magnet has also been taken into account.

The author is indebted to Professor A. Pawlikowski for helpful discussion and to
Dr J. Zieliniski for reading the manuscript. Thanks are also due to I. Irlik, M. Sc., for
performing numerical calculations.
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