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SPIN WAVE STIFFNESS CONSTANT IN THE FERROMAGNETIC
B. C. C. TRANSITION METAL ALLOYS*
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The spin wave stiffness constant D of ferromagnetic b. c. c. transition metal alloys is
calculated. The numerical results are presented for Fe alloys.

1. Introduction

In the previous papers [1-2] the spin wave stiffness constant D was calculated for
the ferromagnetic f. c. c. alloys. The results were obtained using the simple model in which
the magnetic moment of alloy was constant at the whole region of concentration. Now we
analyse a group of b. c. c. alloys. There are some experiments [3-5] in which the depend-
ence of the stiffness constant D on the concentration are examined. Recently Edwards
and Hill [6] calculated the stiffness constant for b. c.c. ferromagnetic alloys and their
results are compared with ours. Morkowski and Jezierski [7] analysed the stiffness constant
in the f.c.c. and b. c. c. alloys using the method of effective. Hamiltonian [8]. In this
paper the spin wave stiffness constant D was calculated using a one band model of fer-
romagnet and the exact expression for D obtained by Edwards and Fisher [9].

The method of calculations is similar as presented in the paper [1] but it is extended to
weak itinerant ferromagnets.

2. The magnon energy in itinerant electron b. c. c. ferromagnetic alloys

We consider the binary ferromagnetic alloys 4,_.B., where c is the concentration
of the impurity B. For the system of itinerant electrons we used the one-band Hamiltonian
H = Y eyt Y, 0505+ 2 Iiman;, )
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here the operators n;,, a;, and a;, are the occupation numbers, the creation and annihila-
tion operators for electron in the Wannier state at the lattice site R; with spin ¢, respec-
tively. &; is the atomic potential, ¢;; denotes the hopping integral and I, is the intraatomic
Coulomb interaction. These parameters may assume different values according to which
sort of atoms occupy the site 7 and j. We start, as in paper [1], from an exact expression
for the stiffness constant D (Edwards and Fisher [9})

im [3 ; <-"k+ +1,_YVie,

—"; ; Oy s A+ @D o Vitr * Vietr], @)
here m is the alloy magnetization, and ¢, the single band dispersion relation.
In this formula essential role plays the two-particle Green function {a;_a,. ;

ay 1@ Y=o and the electron energy g,. The electron energy g, of b. c. c. structure was
assumed in the tight binding approximation:

& = 8t[1—cos (3 ak;) cos (3 ak,) cos (F akp)], 3

here a is the lattice constant and ¢ is a parameter proportional to the bandwidth W of
pure metals. _

The value of the two-particle Green function was calculated similarly as in Ref. [1].
We transform {a;_ @, ; @+ Gy - Y=o into the Wannier representation and than we resolve
by iteration the equation of motion. The Green function ((a,*_aﬂ;aLal,_))m in the
Wannier representation satisfies the following equation -

Go(laj% mypa) = [w'*’f +37]—1{<[al+—-aj+ > a;+ap—]+>aﬂy6
+ Y Y [5G m'p%)— 153Gy m'p%)]

r#1#] e=4,B
+ 15 PGP m*p%)—Go(jP5F; m*p°)]
—I[Go(I°1%; m'p)8,0,5 + I5G (%% 1% ; m*D?)
—LG,(I'Ir s mpY)}, “
where
Go(I°; mp%) = i a4 5 amea, - Y2,
G111 s m'D’) = msai-ayy s apea, D5,
Gz(jﬂjﬂla'ﬂS m’p’) = <<nj—al-aj+; am+ap_>>g)papa5. (4a)

The Greek superscripts denote the type of atoms (4 or B) at the given site. The higher-order
Green function we take in the Random Phase Approximation

<<nt+az+—aj+; ar-:z-+ap—>>a) ~ ey (1—5ij) <<al+—aj+ > m+a Do»
<<nj—al+—aj+; a;:+ap—>>m ~ (n;-» (1-4y) <<at+-aj+§ am+ap—>>(o' (%)
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Then, substituting (5) into (4) we get the system of equations which were solved by iteration.
The small parameter of iteration was & = #/4, (4 = Im). The final expression of two-
-particle Green function has the form

Go(lajﬁ; mypa) ~ 5lp5jm[W1 + chZ + CjW3 + CleW4
+Ws(l—c—cp) Y c+Wsae; Y, ¢l (6)

rélE] rEL#]

where

1 if the site i is occupied by an atom B
110 otherwise

W, = x(A, A)+xy(4, ), W, = p(B, A)+xu(B, A)—W,,
Wy = —W,+p(A4, By+«xu(A4, B), W, = —W,—W,—W;+x(B, B)-+«r(4, B),
Ws = —r(B, 4), Wg= —r(4, B)—r(B, A)+ y(B, B),
u(apB) = d*(ap) [F*(BB)d(aB)+ t*(aB)d(BB) +2t* (aB)t(BB) [ f(e)d(aB) —F(BYA(BA)]];
r(@f) = d*(BP) {t*(@p) [d(aB)+d(Be)]+21(BB)*(aB)f(B) [d(fo)— ()]}
p(oB) = d(ap) [1+26(aB)d(e:B) { () +f(B)}], |
x(@B) = d(ef) [1+4*(eo)d(e)f(@)],
Wow) = 2d3 (o)t 2(arcr),
d@h) = [0—ty+o,+ICn% > —Int 3],
f@ =[o+I]"Y taf)=1t*, d,=mT, x= ) L @)

rlEf

The two-particle Green function was calculated in the previous paper [2] in the pair
approximation. Now we take into consideration the interactions between the first and
second neighbours. In this case the configurational average of the two-particle-Green
function has the form

N S - _ 1 !
OG- hs s O 1O~ D=0 = Nz Z [Wi+LepWo+LepWs
lj

+eepWy+Ws Y, L(l—¢—cey+Ws Y, Lecic,) 10w ®

#l#j r#&El#Ej

1 4
If we denote the right-hand side of expression (8) by N E " Gyy(c, a)dye where o is the
zZ

1j
short-range order parameter, we get the following expression for D

1 1 4
D= 3m l:‘% Z (s + 1YVt — Z [Vieal® Nz Z Gy(c, “):I . )]
k 3
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In paper [2] we considered the influence of local ordering on the stiffness constant D
in term of short-range order parameter A%. Now we used the following relations for the
configurational average of ¢; operators [10].
(i) Disordered system (DO)

The configurational average of ¢; operator has a stdndard form (see Edwards and
Jones [11])

(cf} =1-c¢
{ety =¢
Ly =Ky ely i1 #]
= (s,  if 1= (10)

(ii) Long-range order (LRO)
We used the definitions from Ref. [10]:

Lepy =, Ly =pip} if 1, (11)
where p, is a local concentration in the /site. In the case of a binary alloy, Ducastelle and
Gautier [10] defined a local value Jp; by: .

pi' = 1=c—dp, pi = c+op. (12)

(ii) Short-range order (SRO)
In the case of a short-range order we only take into consideration the pair correlation
functions gif [10] :

<C‘IZC§> = 0“51135” if i = j
= c*c’g}f if 1#j,
epehely = Py, (13)

where
Y ny B y
g?flz ~ gl g’jilzgk;‘-

The correlation functions gff can be expressed in terms of the short-range order
parameter o;

C
gy = l—oy, g =14 ——ay g =1+ (14)

(1-9

The short-range order parameter o is connected with the parameter A® (Ref. [2]) by a simple
relation

Otlj.

(1-9
4

_ A=

Oy = m 0 (15)
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Using the relations (10)-(13) we can write the configurational average of two-particle
Green function for order alloys. At the beginning we denote by G°° the Green function
for disordered system. It has the form

GP° = W, +c(Wy+ Wy + Wsk) + cA(W, — 2Wsk) + > Wyke. (16)
The Green function for SRO alloys may be written as follows:

Gy e, @) = GO+ c(l—c) [Waey;—Ws Y, (e +a,)]

r#El#j

+Ws(l—¢) Y, [c*(ou + e t05) + (1 — €) (o 00, + 000+ 00y 2 5) ] amn
iy ,

Then for LRO system we have
LRO(C) G °+ W,6p,+ Wsdp i+ Wale(dp,+0p;)+0pidp;]
+Ws[(1-2¢) ), op,—(ép+ 517,) Z (c+dp,)

r#ElFEJ

+ Ws[{0pi6p;+c(op;+p))} g_; ) (c+ 5Pr)]- (18)

Substituting expressions (17)-(19) into (9) we get the general formula for the spin wave
stiffness constant for the ordering systems. In the case when a;; = « we can replace the
parameter o by 1 and we get the similar expression as in paper [2].

The electron energy ¢, was taken in this paper in the tight binding approximation 3),

1
and the value of the sums v E . f(k), where f(k) = |V,g/|* or VZe, were obtained by
ko
integration over 1/8 at the first Brillouine Zone for the b. c. c. lattice. We used the mesh
of 216000 points. The Fermi energy & was determined from the condition

1 Z :
= = n, 19
N o n ( )

ke
where n is the number of holes.
In the calculations we used the notation

16\2 1 2
P(4) = (7 N Z (e =) [Vigr] s (20)
and
16 1

L4) = — Z gy + 1= dVieg, (21

where
A= gfl—: ' 22)

=

The plots of the function n, P and L versus A ate presented in Figs 1 and 2.
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Then substituting (20) and (21) into (9) we get the following expression for the spin
wave stiffness constant D in the ferromagnetic alloys.

s X rn- Yol N6
(c,) = 96m [ ( )——8— ( )EZ lj(csa)]- (23)

I

For the comparison of our and other theoretical and experimental results we computed
D(c, ®)/D(0, 0). The numerical results are presented in the next Sections.
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2
Fig. 1. Plots of the functions P and » versus 4 = WBF

' 2
Fig. 2. Plot of the function L versus 4 = W&p

3. The spin wave stiffness constant in f. c. c. NiFe alloys in the generalized model

In Ref. [1] the stiffness constant D was calculated for a simple model in which the
magnetic moment of the alloy was constant at the whole region of concentration. At low
concentration this model gives good agreement with the experimental data, but when the
concentration increases, the value of D(c)/Dy; deviates from the experimental points (see:
Ref. [1], Fig. 6).

Now we consider a more general model of NiFe alloys. Iron is treated as a weak fer-
romagnet as in Ref. [12] and the magnetic moment of the alloy changes linearly with the
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concentration of impurity in the region from 0-609; Fe [13]. In numerical calculations
we examined the role of interactions between the first and second neighbours (the second
shell). The calculations of the spin wave stiffness constant were made for the following
values of parameters: Iy, = Iy; = 0.95¢eV, ep.—en; = 0.0eV, Wy =33eV and
Wge = 5.4¢V. We have considered three models:

Model A. The magnetic moment of the alloy was constant and the values of the
functions L and P were taken as those for a pure metal. This model corresponds to the calcu-

lations in Ref. [1] in which only the interactions between central atom and nearest neigh-
bours were considered. The result is presented by a curve 4 in Fig. 3.

~

1

(7| I ,
02 04 0§ ¢

Ni Fe

Fig. 3. Stiffness constant D(c)/Dy; for the f. c. c. NiFe alloys. The curves 4, B, C correspond to the model
described in text

Model B. The magnetic moment was assumed to change linearly with the concen-
tration of impurity up to 609 Fe. In this way the values of L and P changed too. The
curve B in Fig. 3 shows this result.

Model C. In this case we consider the B model, including the interaction between
the first and second neighbours. The result is labeled by letter C in Fig. 3.
In these three cases we assumed the hopping integral ¢,; between different sites to
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be of the form: #,5 = \/t41p and t4p = 3(t4+15). The values of D(c)/ Dy, for these
hopping integrals differ about 19 Ni(Fe) from each other. The numerical analysis
showed that the slope of D(c)/Dyjr.y increases when the model becomes more realistic.

4. Nickel-iron and iron-nickel ferromagnetic alloys

In this Section we consider the face-centered-cubic NiFe and the body centered-cubic
FeNi alloys. The properties of these alloys are very interesting because for about 70% Fe
at the NiFe alloy the stiffness constant goes to zero. In our calculations we examined the
dependence of D on the concentration from 0 to 60% Fe at NiFe alloy and from 0 to
259 Ni at FeNi alloy. We have taken the same values of parameters for these alloys.
The intraatomic Coulomb interaction I was put fy; = Ir, = 0.95eV and 6 = g, —én;

fce

was taken to be —0.2 and 0.0 eV, the bandwidths of pure components are W5 = 3.3 eV

D)y,

o Kohgi et al. [21] AN
X Hiroyoshi et al. [22] N
& Yamada et at. [23]
B Hatherly et al. [24]
~w Hennion et al. [25]
% Maeda et al. [27]

02 04 T 0 02 0 c

Ni Fe Fe Ni

Fig. 4 Fig. 5
Fig. 4. Values of D as a function of impurity concentration ¢ for the f. ¢. c. NiFe alloys. The full curves 7
and 2 correspond to é = 0.0 and —0.2 eV, respectively. The points and broken curve denote experimental
data,
Fig. 5. Stiffness constant D(c)/Dg. for the b. c. c. FeNi alloys. The full curves I and 2 correspond to § = 0.0
and 0.2 eV, respectively. The broken curve denotes Edwards and Hill [6] CPA-RPA results for the differ-
g ent models
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and WE*® = 5.4 eV for NiFe alloy. In the case of the b. c. c. FeNi alloy é has the opposite
sign, and WS = 5.9 eV. The small difference between the intraatomic Coulomb inter-
action of the components only slightly changes the slope of the curves D(c)/D,yre-

The numerical results are presented in Figs 4 and 5. The points denote the experi-
mental data and the dashed curve — the theoretical results. The solid curve presents our

results.

5. The stiffness constant in b. c. c. alloys

a. FeCo alloy

Using the method presented in Section 2 we computed the stiffness constant in FeCo
alloys. The calculations were made for the different concentration in the region from 0
to 60 9, Co. The bandwidths of Fe and Co were taken as in Ref. [14] and the alloy magnetic
moment changed as reported by Hasagawa and Kanamori [13]. The numerical analysis
was made for the different values of intraatomic Coulomb interaction and atomic poten-
tials. Our aim was to show how the change of the parameters modifies the character of
curves D(c)/Dg.. The results are presented in Fig. 6(a—c). The dashed curve denotes
Edwards’ and Hill’s [6] RPA-CPA result. Curves /-4 correspond to 6 = —1.0, —0.8,
—0.6 and 1.0 eV, respectively.

b. FeMn alloy

Yamauchi et al. [5] estimated the stiffness constant D from measurements of magnet-
ization of a-phase Fe-Mn alloys at low temperatures. The a-phase FeMn alloy is stable
only up to about 5 at 9 Mn, but it can be extended up to more than 10 at % Mn by cold
working. The magnetic moment of FeMn alloys decreases linearly while increasing Mn
concentration up to about 11 at J; Mn and then decreases very rapidly [5]. Because the
change of magnetic moment in this region of concentration is very small (about 0.15 pg)
therefore in the numerical computation we assumed a value of magnetic moment in the
alloy to be constant. The bandwidths of Fe and Mn are very similar and we take Wp,
= Wy = 5.9 eV [14]. The values of intraatomic Coulomb interaction weie estimated
from Ref. [13] to be Iy, = 0.97 €V and 1y, = 0.72 eV.

In the case of low concentration the average two-particle Green function (formula (9))
for disordered alloys has a simple form

G(c, 0) = Wy +c(Wy+ Wy +1Ws). (24)

The numerical calculations of the spin wave stiffness constant D were made up to 10 at
7% Mn. The results are shown in Fig. 7. The points present the experimental data [5],
and the full curve gives theoretical results for 6 = —0.5eV.

¢. FeCr alloy

The magnetic properties of FeCr alloys in the composition range 0-70 at %, Cr were
studied recently by Aldred et al. [3, 4]. The iron-chromium system has a critical concentra-
tion at which the ferromagnetism disappears as a _function of concentration.
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Fig. 6. The values of stiffness constant for the
b. c. ¢. FeCo alloys. The full theoretical curves
14 calculated for the different A1 correspond
6 = —1.0, ~0.8, —0.6, and 1.0 eV, respec-
tively. The broken curves denote Edwards’ and
Hill’s [6] theoretical results for the different
models. a —A4I = —0.05eV,b—4I=0.0¢V,
c—AI = 0.05¢eV
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The bulk magnetic moment in FeCr alloys decreases linearly with increasing the
chromium concentration. Aldred [3] calculated the stiffness coefficients from the temper-
ature dependence of the magnetization. These results are compared with those obtained
directly by inelastic-neutron-scattering experiments (Lowde et al. [15]) and with our
theoretical results. The theoretical values of D in the composition range 0-20%; Cr were
computed using the model presented in Section 2. The bandwidths of Fe and Cr were
assumed to be 5.9 ¢V and 6.2 eV, respectively.

The difference between atomic potentials 6 = ¢, — &g, Was taken as 1.0 eV. The theoret-
ical results for the different values of 41 = I, —Jg, are presented in Fig. 8. Curves 1, 2, 3

104

Fe

D(e) D

B ~=~Aldred [3]
o Lowde el al.[th]

- . 0:1 + :
. ¢ i 02 5

Fe Mn Fe Cr
Fig. 7 Fig. 8

Fig. 7. Stiffness constant D versus composition for b. ¢. c. FeMn alloy. The points are the experimental
data [5]. The full curve presents theoretical results for A = —0.25¢V and 6 = —0.5 eV
Fig. 8. Values of D for the b. c. ¢. FeCr alloys, as a function of Cr concentration. The broken curve presents
Aldred [3] experimental data. The points. denote Lowde et al. [15] data. The full curves I-3 correspond
to the presént theoretical calculations for 6 = 1.0 eV and AI = —0.30, —0.35, —0.40, respectively

correspond to Al = —0.30, —0.35 and —0.40 eV, 1espectively. The broken curve presents
the experimental ‘results obtained by Aldred [3], and the points present the inelastic-
-neutron-scattering data (Lowde et al. [15]).
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6. Spin wave stiffness coefficient in FePd f. c. c. alloys

The ferromagnetic FePd alloy has the face-centered-cubic lattice above 50 at ¢ Pd
in the system. Recently Yamauchi et al. [16] estimated the values of stiffness constant D
in disordered f. c. c. PdFe alloys from the temperature dependence of the magnetization.
Their results are shown in figure 9 (broken curve).

In order to calculate the theoretical dependence of stiffiiess constant on the concentra-
tion in PdFe alloys we assumed the following model:

We start with the Fe, sPdy s f. c. c. alloy. The experimental value of D for such
a system is about 0.200 €V A2, The parameters of theory were chosen in such a way,

2007 i
<
g 100t 1
o
; 1
e Yamauchi et al. [16]
x Stringfellow {271
4 Y ™
Fe Pd

Fig. 9. Value of D(c)/Dr. as a function of impurity concentration for FePd f. c. c. alloys. The poinfs denote

experimental data. The broken curve presents the smoothed version of Yamauchi et al. [16] experimental

results. The full curves are the present theoretical results for the different values of A7 and J (the number

in brackets denotes the curve). 41 =0, = 03eV (I),4I = 0,8 = 04¢eV (2), 4] = —0.05, 6 = 0.3 eV
(3, AI = —~0.05, 6 =04 ¢V (4), Al = —0.10, 6 = 0.4 eV (5)

in order to get similar value of D. The magnetic moment of the Fe, sPd, s alloy was
estimated to be 1.6 up and found to change linearly with the increasing Pd concentra-
tion. The FePd alloy in the region 50—80 at % Pd was considered as a strong
ferromagnet. The bandwidths of iron and palladium were taken as 5.4 and 3.75 eV,
respectively. The value of the intraatomic Coulomb interaction of Fe was- estimated
to ‘be 0.65 eV. We computed the stiffness constant for the different value of § and
Al = Ipy—Iy,. The results (curves I-5) are presented in figure 9. The points denote the
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experimental data and the broken curve was fitted by Yamauchi et al. [16] Although our
theoretical results do not agree with the experimental data the character of the curves is
similar. The theoretical value of D decreases with an increase of palladium concentration.

7. Conclusions

Up to 1977 various expressions were derived for the spin wave stiffness constant D
in ferromagnetic alloys. The spin wave spectrum can be obtained from the poles of the
dynamical transverse susceptibility (Yamada and ' Shimizu [20],” Edwards and Hill [6],
Riedinger and Nauciel-Bloch [24], Jezierski [1]), or using the method of effective magnon
Hamiltonian (Morkowski [8]). The both methdds give the final result in the RPA-CPA.

Edwards and Hill [6] showed that the most 1mportant parameter for deter-
mining D in NiFe alloys, within the RPA, is the exchange splitting A for pure Ni.
Jezierski [1] has shown, for NiFe alloys, that the change of parameter AJ (where
Al = Iy, —Iy;) gives the change of the slope of the coefficient D (see Ref. [1], Fig. 5).
In present and previous papers we considered the magnon energy in the ferromagnetic
f.c.c. and b. c.c. transition metal alloys. The binary alloys were described in terms
of a single-band model of an itinerant electron ferromagnet. A simple Hamiltonian
(1) was used in which the change of the hopping integral, atomic potential, and intra-
atomic Coulomb interaction was considered. The values of spin wave stiffness constant D
as a function of concentration for the different alloys were computed using the expressmn
derived by Edwards and Fisher [9]. The two-particle Green function €e;_ay, . ; af v ap Y=o
which appeared in the expression (2) was calculated directly from the equation of motion.
The equation (4) was solved for a full Hamiltonian (1) without using the Hartree-Fock
Approximation. The higher-order Green functions in the equation of motion were calcu-
lated in the Random Phase Approximation. Then, using the iterative method, the two-
-particle Green function was found as a function. of ¢, operators. Finally, the configura-
tional average of the two particle Green function depended on the concentration and
short range order parameters.

Those approximations and the method of calculations allowed us to consider the
effects of interaction between the first and second neighbours and the effects of local
ordering. The second important magnitude was the electron energy ¢, In our papers
we took ¢ in the tight binding approximation. In the TBA we have only one parameter W
(bandwidth) which characterized the band structure of pure metal. The bandwidths of
transition metals were taken according to McAlister et al. [14]. Besides the bandwidth
in our theory there are two other parameters: atomic potential and intraatomic Coulomb
interaction. The values of those parameters were assumed similarly as in other theoret-
ical papers. In the computations we established that the magnetic moments of considered
alloys changed with the concentration.

In paper [2] the influence of local ordering on the stiffness constant was examined.
In the case of NiFe alloy our results indicated that the stiffness constant D for ordered
alloys is greater than for disordered systems. Although our results for ordered f.c. c.
Ni;Fe alloy are less than experimental data (Mikke et al. [17, 18] and Jankowska et al. [19])
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the qualitative character is similar. The theoretical results presented in this paper for the
b. c. c. Fe-base alloys indicated that the simple single band model with the change of
hopping integral may be adequate to describe the magnon energy in the ferromagnetic
transition metal alloys.

The author would like to thank Professor J. Morkowski for a useful discussion.
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