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A mnon-central force model has been employed to compute the phonon-dispersion
relations in transition metals. The model contains three types of interactions, i. e. radial
interactions operating up to third neighbouring ions, Clark et al. type angular interactions
for first and second neighbouring ions, and electron-ion interactions given by a modified
Cheveau scheme, which has been modified to include an exact expression for Bardeen’s
g-function and the modified form of the screening parameter. The model is used to compute
the dispersion-frequencies for palladium (fcc) and vanadium (bec). Good agreement between
computed and experimental data has been attained.

1. Introduction

In recent years the lattice dynamics of transitional metals has been studied on the
basis of two different approaches i. e. pseudopotential [1-3] approaches and phenome-
nological [3-10] approaches. The former approaches, based on certain assumptions,
preclude the possibility of their use in studying the complicated lattices. These potentials
require further modifications with respect to their non-centrality and dielectric functions
for yielding a good comparison between computed and experimental dispersion-data.
These modifications make these methods more complex and difficult.

The phenomenological models [4-9] either use de-Launay [11] type angular inter-
actions or Sharma Joshi [12] volume interactions. The former interactions suffer from the
deficiency of rotational-invariance and the later are asymmetric as pointed out by Lax
[13]. The Krebs [14] electron ion interactions used by Kulshrestha and Upadhyaya [3]
suffer from the deficiency of internal inequilibrium as reported by Cochran [15]. The
Bhatia [16] model used by Shukla and Bertolo [10] is also deficient in these regards.

In view of these deficiencies, a new non-central force model has been developed.
The model assumes ion-ion interactions to be radial up to third neighbours and Clark
et al. [17] type angular up to second neighbours. These more distant ion-ion interactions
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are needed because of tightly-bounded d-electrons in the transition metals. The electron-ion
interactions are included on the lines suggested by the modified Cheveau [18] model.
The model has been used to compute the dispersion-frequencies for palladium (fcc) and
vanadium (bcc).

2. Formulations and results

The phonon-frequencies (w) are expressed by the following secular determinant:
[D—mw? 1] = 0, )

where m is the mass of the atom and I is the unit matrix of the order three. The dynamical
matrix-elements [D] are the sum of ion-ion [D,,] terms and electron-ion [Dj,] terms.
The ion-ion [Di,,;] terms are expressed as

Diy = (200, —16y)S,S5+% 5,8,03[4C(C,+Cp)— (1 ~2C,)*],

Dy =201 +8(yy +y2)] [2— CoCp+ C)]+40,5;

aFEfEyFEa

+ % [1+C4C,(1—2C2)]as
8 CLZ ‘ ’ ’ !
$4 o3| 1+ X (Cp+C) (1= C,C)) | —4yi[25,~Cp=C}], fee o))

Daitﬂ = 8(oy — 4 +3 V2)8,8,C, +8a3S,S,C,Cp,
Di, = (8uy+16y; +24y,) (1—C,C,C,) +4a,S>

aFBEy#a
—2y,(4C,— Cy— C,—2)+3y,(2— C;—C,)
+403(2S2 + S5 +S2 - 25285 —2S282), bee )

where o, f =1, 2, 3, S, = sin (3 aq,), C, = cos (+aq,), C, = cos (aq,), %;, 43, ¢z are the
radial force constants for the first, second and third neighbouring ions respectively, v,
and y, are the angular force constants for the first and second neighbours respectively,
a is the lattice parameter and g, is the a-component of the wave-vector g.

The electron-ion term [Dj;] can be written as
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where K, is the bulk modulus of the electron-gas. Equation (4) represents the modified
form of the Cheveau [18] expression. The Bardeen [19] function g has been included
to reduce the effective potential at the core-region of the ions and to admit the Bloch
type electron-wave function as suggested by Toya [20] and Kohn [21]. This function has



285

been further modified for the Wigner-Seitzshell, as reported by Bross and Bohn [22] and
successfully used by Goel et al. [9, 23] i. e. for fce structure

—2 x+y X+y+z
g= 72 sin x+sin y —sin
x? +y +22 (x—y)— 2
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(b) along [110] direction
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The screening parameter (1) is modified to take into account its dependence on wave
number (k) and the repulsion due to electrons. These modifications suggested by Langer
and Vosko [24] and Pines [25] lead to the modified screening parameter as

1/2
¥y

A =0.353 (—-) kg, )
a0

where r, = inter-electronic spacing = r,/Z/3, r, = radius of atomic sphere, Z = valence,
ao = Bohr radius, k; = Fermi-wave number, and
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The six model parameters (o, &5, &3, y1, 2 and aK,) are reduced to five by assuming
a proper ratio between y, and y,, i. e. y,/y, = —9/2. The remaining five parameters
have been computed independently making use of known values of three elastic constants
(Ci1,Ci2, Css) and two transverse zone-boundary frequencies v; and v, in the directions
[100] and [111], respectively. The resulting equations are expressed as

oy =+ On*my?—TaCyy+306y,), o, = L @n?mvi—nPmv +64y,),
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aK, = aC,,—aCy,+32y,, fcc (11)
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The input data and the computed model parameters for palladium and vanadium
are given in Table 1.

TABLE 1
Input data and computed model parameters for palladium and vanadium
Computed model
Metal Input data parameter in 10 dyne/cm

Cy1 = 2.271 x 10*2 dyne/cm? x, = 8.70043
Ref. [26] Cy2 = 1.761 x 10** dyne/cm? a, = 030523
palladium Cua = 0.717 x 10'2 dyne/cm? a3 = —0.99858
=384 y1 = —0.04511

v, = 4,56 THz y, = 0.010024
Ref. [27] v, = 3.21 THz aK, = 3.49979
C,;1 = 2.28 x 10'2 dyne/cm? @, = 0.49949

Ref, [28] Ci2 = 1.188x 10*2 dyne/cm? a, = (0.3864

Cas = 0,426 x 102 dynefcm?® oz = —0.46267
vanadium a=304A vy = 0.20476
vy = 7.50 THz y2 = —0.04550
Ref. [29] v, = 6.00 THz aK. = 3.40854
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3. Conclusion

The computed dispersion curves for palladium and vanadium are shown in Figs. 1
and 2, respectively. The experimental points (O /\ 4A) as reported by Brockhouse. [27]
and Colella and Batterman [29] for palladium and vanadium respectively, are also marked
in the figures. A close inspection of the figures reveals that the computed curves are in

Q- -7 g

Fig. 1. Computed phonon dispersion for palladium. Experimental points are marked by circle and triangle
*_

8 10037 5 /)-l%‘ \[7{ . oy

T
L

[+,
Vi
iy

N
N ~

V(70 HZ) —

1 L 1 | ] { 1 1

08 04 0 02 04

Fig. 2, Computed phonon dispersion for vanadium. Experimental points are marked by circle and triangle

good agreement with the experimental ones in all the three symmetry directions. Such
satisfactory results have not been obtained so far. It may be concluded that the model
presents correctly the actual interactions responsible for the lattice vibrations in the
transition metals.

Editorial note, This article was proofread by the editors only, not by the author.
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