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PRESSURE EFFECTS ON SPECTRAL LINES*

By J. Szupy
Institute of Physics, Nicholas Copernicus University, Torun**
"(Received February 7, 1978)

Intensity distribution, width and shift of ‘pressure broadened spectral lines as well
as profiles of satellite bands accompanying these lines are discussed. Results of recent calcula-
tions are reviewed and compared with experiment. Problems regarding specific broadening
effects (pressure induced transitions, correlations between Doppler and collision broadening)
are also indicated.

1. Introduction

The influence of pressure on the shape, width and po_siti_on'qf spectral lines has been
known for a long time [1-4]. This report intends to emphasize that area of work on pressure
broadening phenomena done during the last few years which has seen numerous theoretical
efforts together with extensive experimental investigations examining and stimulating
theoretical results. I wish to draw particular attention to one important aspect of pressure
broadening, namely this connected with its applications in studies of interatomic inter-
actions [3-6]. It has long been recognized that the profiles of pressure broadened spectral
lines reflect the interaction potentials:of the colliding particles for the initial and final
-state of the radiating atom. Whereas, information about interactions between atoms in
the ground state is available from atomic beam experiments, the line-shape measurements
can provide information about interactions involving excited levels.

The phenomenon of pressure broadening has been theore'tically investigated using
a variety of both classical and quantum-mechanical methods. Most of the theoretical
studies have considered either the limit of a low-pressure and high-temperature gas (“impact
- theory™) or a dense low-temperature gas (‘“quasistatic theory”) [1-3]. The impact theory
giving a Lorentzian shape with both the half-width and shift proportional to the density
of perturbers is usually valid in the core of the line. On the other hand, the quasistatic
theory yields a good approximation to the profile of far wings of the line {5, 6].

In most works, so far performed, the parameters describing the interaction potentials
have been determined from measurements of the half-width and shift of the line using the
impact theory. Such a procedure is analogous to that based on the measurements of total
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cross sections in molecular beam experiments. However, as Behmenburg [5] and Gallagher
et al.'[6] have pointed out, much more information on interatomic potentials may be
derived from the intensity distribution (i.e. differential cross sections) in the line, especially
in far wings, where the quasistatic theory holds.

In the intermediate frequency range (i.e. the region between the impact core and
quasistatic wing) both limiting theories fail.

We will discuss here some results of recent work on line profiles in far wings and
intermediate frequency range as well as in the core of the line. First of all we will focus
our attention on the unified treatment of pressure broadening developed recently [7]
which permits calculations of the intensity distribution also in the intermediate frequency
range. This treatment is based on the quasimolecular formulation of line broadening
theory proposed many years ago by Jabloniski {8-10]. In 1931 Jabtofiski [8] first recognized
the analogy between the mechanism of pressure broadening and of the production of
molecular spectra. Starting from this analogy the line shape can be calculated assuming
the Born-Oppenheimer approximation and the Franck-Condon principle (FCP) [9, 10].
Such an approach, which was further developed by Baranger [11, 12] and others [13-15] is
adiabatic in nature because it neglects the transitions between different levels of the radiating
atom induced by the inelastic collisions with perturbing atoms. Non-adiabatic effects
which are thus ignored may be very important near line centre [12], but for the intermediate.
frequency range and for the wings these effects can be nearly always neglected.

2. Unified Franck-Condon line shape

In the quasi-molecular theory [7-15] the system of radiating atom plus perturber-
-bath is treated as a huge molecule. The shape of the broadened line is then determined
in the way analogous to that for the intensity distribution in molecular continuum radiation,
i.e. by the calculation of Franck-Condon overlap integrals for free-free transitions.

Let |i> and [f) denote the total wavefunctions of the system composed of one radiating
atom and # perturbers for the initial and final level of the radiating atom, respectively.
In the Born-Oppenheimer approximation both |i> and |f) can be written as the products:

1> = lg> 1), 1> = g 179, (1)
where |@;> and |g,> denote the electronic wavefunction of the radiating atom, which
depend parametrically on the coordinates of perturbers. The wavefunctions |P{™> and -
P> describe the translational motion of n perturbers for the initial and final level of
the radiating atom, respectively.

Using Eq. (1) and applying what is called the Condon approximation (or the quantum-
-mechanical form of FCP) we may express the electric dipole transition moment
ilplf> as

Glulf> ~ uipPPee, 2
where o
my = {plnlesy 3)
is the radiating dipole moment assumed to be independent of perturbers positions.
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The theoretical treatment is greatly simplified if we can neglect the interactions between
perturbers. In such a case the wavefunction W™ (or {¥{">) can be written as a product
of one-perturber wavefunctions [¥{") (or |¥{")). Using this model one can derive
a “unified Franck-Condon” (UFC) expression for the intensity distribution f(w) in the
broadened line as was done in the recent paper of Baylis and the present author [7]. The
UFC line shape is given by

o) = % F(X)y o
“+(3)
2

where x = w—wo—4, w, denotes the unperturbed frequency of the line. Here y and 4
are given by the formula

%m ”Nh< Z(zlm{l—exp[zz(oz 5;')]}\ (5)

“

where the summation is over the quantum numbers / of the angular momentum of the

relative motion and the symbol {...> indicates the average over initial wave vectors k;
h2k}? ‘

of the perturber (or the initial energies g; = with u — the reduced mass of the

radiating and perturbing atoms).

In Eq. (5) ; (or 6;") is the scattering phase shift for the upper (or lower) level of the
radiator and N is the density number of perturbers. In Eq. (4) F(x) is essentially a sum
of reduced free-free Franck-Condon factors Hy(x) (cf. [7]):

h [ o]
F(x) = <27;k. Z @l+1) iHl(x)|2>. (6)
1=0 '

To determine H,(x) the one-perturber radial wavefunctions y;(r) and v;'(r) for the upper
and lower state of the radiator, respectively, must be found (¥ — the distance between the
radiating and perturbing atoms). In the JWKB approximation H,(x) is given by [7]

o

@
e - 2 | %—) r 0
with "
2 I+ 12
o) = {F - vion- 52} ®
and
hx —AV(r)
@,(r) = f e dr. ®
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Here V(r) is the interaction potential for the initial level of the radiating atom and
AV(r) = V'(r)~V"(r), where V'(r) (or ¥"'(r)) denotes the interaction potential for the
upper (or lower) level of the radiator, respectively. In Eqs. (D—(9) r, denotes the classical
turning point.

Eq. (4) with H/(x) given by Eq. (7) was shown [7] to be unified in the sense that it
yields the Lorentzian shape in the core of the line and the quasistatic shape for the extreme
wing and permits calculation of the shape in the intermediate frequency range.

3. Line wings

In order to determine the line proﬁle in the wings we need H)(x) at large x. At large x
the main contrlbutlon to Hy(x) (Eq. (7)) comes from the regions of statlonary phase, i.e..

7
from the vicinity of “Condon points” r; at Whlch( « )> = 0. According to Eq. (9)
r /..
this condition is equivalent to
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Fig. 1. Typical view of the dependence of potential difference 4V (r) on interatomic separation r. r 1 F2
and ry —real Condon points for x > x,



265

Thus solving this equation we can express the distance » between interacting atoms by
means of the frequencey displacement x. We have to bear in mind, however, that generally r
may be a multivalued function of x. The typical view of the dependence of A¥(r) on r is
shown in Fig. 1, where r, denotes the distance of the minimum of 4¥(r). Denoting by

1
x, the value x, = . 4V (ro) we can see that for x > x, there are real solutions r, of Eq. (10).

For 0 > x > x, there are two real Condon points #; and r,, which tend to coalesce
when x approaches x,. When x < x, there are no real solutions of Eq. (10) and we are
dealing with complex Condon points r,.

Using the uniform approximation to evaluation of integral in Eq. (7) we were able
to obtain the following formula for the UFC profile in the line wings [7]:

I() - 34_“”’”1 ez, r2LAz,) Viir) (11)
@) = — * Zexp| - ,
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Fig. 2. Universal line shape function L{z) (full line). Dashed lines: asymptotic behaviour for z > 0: L(2)
Hﬁmwr’ /% (quasistatic limit) and for z < 0: L(z) ~ (1087|=z])- 2 exp (—121/3|2]) (antistatic limit)
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where z, is the reduced frequency:

Z I )1/3 1 dAv(n\?
¢ kT hoodr /.

and L(z.) is the universal line shape function

—4/3

1 d*Av(r) (1)

h o dr?

re

L(z,) = § ALl Ai (~z )| exp ({73, (13)
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where Ai(x) denotes the Airy function. The function L(z.), which is identical with the
function T(—z,, oc) introduced by Sando and Wormhoudt [15] is tabulated in Ref. [7]
and its plot on z, is shown in Fig. 2.

A. Quasistatic limit
For x = X,, i.e. for real Condon points, the line shape in Eq. (11) is determined by
the function L(z,) with positive z,. If the Condon points r; and r, (Fig. 1) are well separated

then z, is large. Using the asymptotic form of L(z,) for z, > 1 one can show [7] that for
Ix] » v Eq. (11) reduces to

2 ) Vi(rc)
A
() ~ 4nNh Z - (14

‘ dAvV(r)

(4

dr

fe

This is the well known one-perturber quasistatic profile [1-3], which is obviously singular
for r, = rg, i.e. for the extrema of AV{(r).

For more than forty years there have been reports of diffuse intensity maxima, usually
called the satellite bands, occurring in the wings of pressure broadened atomic spectral
lines [1-3]. The origin of these bands has been a source of controversy for a long time.
Recent careful measurements made at low perturber densities [6, 16-20] together with
several calculations [7 15, 18] appear to corroborate the quasistatic explanation i21.
According to this the primary mechanism in the formation of satellites is the enhancement
of the spectral distribution in regions where potential curves in the upper and lower state
run parallel, i.e. where the forces in both states are equal and the one-perturber profile
(Eq. (14)) is singular. 'Hindmarsh and Farr [2] have shown, however, that problems with
such singularities may be avoided if the multiple interactions with perturbers are taken
into account. Using this version of quasistatic theory McCartan and Hindmarsh [17]
were able to get a good-agreement of the calculated profile of the red satellite accompanying
the 4047 A line of potassium perturbed by Kr with the experimental one.

T would like to emphasize that the UFC line shape (Eq. (11)) has no singularities at
all as one follows directly. from properties of the universal function L(z,) (Fig. 2). The
maximum of L(z,)) does not occur at the classical satellite position z, = = 0, but rather
at z,,,, = 0.3288. Thus from the point of view of the UFC theory the position of the
maximum of the satellite band is not identical with the “classical satellite frequency” x; as
was assumed in previous analyses based on the Hindmarsh-Farr theory.

B. Antistatic limit

The classically inaccessible region of frequencies x < x, in the spectral line corresponds
to the complex Condon points (Fig. 1). The complex Condon points can give, however,
the real contributions to the intensity distribution, which as was shown [7, 15] characteristi-
cally falls off exponentially with increasing separation from the classical satellite frequency x,.
This exponential profile (called the “antistatic” one in Ref. [7]) has the same form as the
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quasistatic distribution in Eq. (14) but is smaller by a factor 3-12exp (—121/3|z,]). The .
antistatic profile is mainly responsible for the shape of the long-wavelength side of the
red satellite band. Let us mention further that the measurements of positions of maxima
of satellites as well as the intensity distribution in the antistatic part of the spectral line
may also serve as a source of information about the interatomic potentials.

C. The UFC satellite bands

The calculation of line shape from the UFC formula in Eq. (11) requires the knowledge
of AV(r) and its first and second derivatives. Assuming A¥(r) in the form of a Lennard-
Jones (LJ) potential T have completed recently calculations for the long-wavelength wings
of the 4593 and 3889 A lines of Cs perturbed by Xe. Results of these calculations are
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Fig. 3. Comparison of the UFC shape of satellite band at Cs-3889 A line broadened by Xe (full line) with
experimental shape [18a] (dashed line). Calculated shape corresponds to & = 29.1 cm™! and ro = 11.1 A

shown in Figs. 3 and 4, where they are compared with the experimental data of Kielkopf
et al. [18a). The van der Waals constants Ce used in these calculations were taken from the
paper of Mahan [22]. The repulsive constants C, , in LJ potentials, which may be expressed
by means of Cy and the depth ¢ .of AV(r) cannot be calculated theoretically. Therefore,
in the present calculations ¢ were treated as empirical parameters. Curve I in Fig. 3 and
the continuous line in Fig. 4 represent the UFC shape for ¢ = —#%x,,, where x,, is the
measured position of the maxima of red satellites found in Ref. [18a]. Let us note that
in the Hindmarsh-Farr theory x,, = x,. However, this is not the case in the UFC theory,

namely the UFC maxima of red satellites are situated closer to the main line than those
of the Hindmarsh-Farr theory.
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The influence of ¢ on the UFC profile of satellites is illustrated in Fig. 4, where the
curve 2 corresponds to the value 159, greater than the ‘“Hindmarsh value” ¢ = —hix,.
As can be seen from Figs. 3 and 4 the UFC theory yields profiles which are in a reason-
able agreement with experiment. However, additional calculations with more realistic
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Fig. 4. Comparison of the UFC shape of satellite: band at Cs-4593 A line broadened by Xe with experimental
shape [18a] (dashed line): Curve 1: UFC for e = 39.2 cm™, ro = 8.71 A; Curve 2: UFC for & = 45.1 cm™,
’ ro = 849 A o

potentials such as those given first b'y Bayli's’ [23] and then by Pascale and Vandeplanque [24]
are necessary. i ) ‘

Using the measured positions. of maxima .of red satellites at Cs principal series Kiel-
kopf [25] was able to estimate ‘potential curves for several excited states of Cs.

Let us mention further that there is an analogy between the appearance of red satellites
and the “rainbow effect” in molecular beam scattering [26].

D. Interaction potentials from line wings data

Gallagher et al. [6] at JILA in Boulder, Colorado have developed an inversion tech-
nique which enables one to determine the interaction potential from the shape of extreme
wings without assumption of any particular form of AV(r). This technique is based on
the quasistatic distribution given by Eq. (14). For small interatomic distances the Boltzmann
factor plays usually an important role and this is a cause of the temperature dependence
of the shape of line wings. An example of the temperature dependence found in emission
by Gallagher et al. [6b] for the Rb-7800 A line broadened by Kr is shown in Fig. 5.
Let us note that opposite temperature dependences are observed on the red and blue
sides of the line. From the temperature dependence of the intensity at different frequencies x
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Fig. 5.-Normalized emission spectrum of the Rb-7800 A line broadened by Kr at N = 10*° cm~3, The gas
temperature are indicated (from Ref. [6b])
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Fig. 6. The Rb-Kr interaction: potentials inferred fromi the ds{ta in Fig. 5 (from Ref. [6b])

one can determine both ¥’(r) and ¥"/(r). The resulting potentials obtained in Ref, [6b]
for Rb + Kr are shown in Fig. 6. v _ o

Using the measurements of temperature or pressure dependence of the profile in
line wings Gallagher et al. [6] were able to construct potential curves for different alkali
atoms interacting with noble-gas atoms. Similar studies have been done by Behmenburg
et al. [5] in Diisseldorf for mercury vapours mixed with noble gases.

Quite recently Cheron, Scheps and Gallagher [77] have reported results of their
emission measurements of the shapes of the thalliwm 5350 and 3776 A resonance . lines
broadened by noble gases. They have studied the Lorentzian-shaped line cores as well as
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the transitions to non-Lorentzian regions, satellites bands and profiles in the wings. The
comparison of their measurements with the UFC theory the Van der Waals potentials
shows quahtatlve but-not quantitative agreement (see Fig. 9 of Ref. [77]). This can be
attributed primarily to the fact that the actual long-range interaction between Tl and
noble-gas atoms appears to vary somewhat more slowly than #-©.

Another aspect of profiles in line wings, namely that connected with the self broadening,
has been studied by Niemax and Pichler [27] in Kiel, who found asymmetries for self-
broadening alkali resonance lines. Awan and Lewis [21] in Newcastle have recently reported
results of their absorption measurements of the selfbroadened Rb resonance lines. They
found satellites in the inner wing region of each resonance line of Rb and showed that
these satellites were considerable fainter than the features frequently observed due to
perturbation by noble gases.

E. Pressure induced transitions

In 1975 Happer et al. [75] at Columbia University in New York have discovered
strong visible emission bands from Cs-— noble-gas and Rb-— noble-gas systems (at
noble gas pressures of a few atmospheres) excited with blue lines of an argon-ion laser.
The dominant features of the spectrum are the yellow bands, whose maxima shift system-
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Fig. 7. Potential curves for Cs-Kr and Cs-He according to Pascale and Vandeplanque [24] and scheme of
excitation of yellow emission bands in experiments of Tam et al. [75a]

atically toward the red for the heavier noble gases. For Cs the yellow band occurs on
the longwavelength side of the forbidden transition 7S —6S. Happer et al. [75a, d} have
suggested that this band arises due to the transitions between a bound 7s¢ Cs-noble-gas
excited molecular state and a dissociative 6so ground state. The potential curves for these
states calculated by Pascale and Vandeplanque [24] are shown in Fig. 7.
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The origin of the emission bands under consideration may be explained if one assumes
that the transition moment for 7so —6so varies with the interatomic separation r and for
small r it is large. Let us note that the repulsive character of potential curve for the 7so
state of Cs-He (see Fig. 7) is consistent with the experimental fact that no yellow emission
band occurs for helium.

In a further work Happer et al. [75b] have observed the same Cs yellow band in
absorption. A comparison of their absorption and emission profiles for the 7ss—6sc
transition in Cs-Xe is shown in Fig. 8. Various aspects of these bands have just been
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Fig. 8. Absorption and emission profiles for the 6S— 78 transition in Cs perturbed by Xe at the xenon
pressure 2.4 atm and the cell temperature 370°C (from Ref. [75b])

discussed by Moe, Tam and Happer [75d] on the basis of the Pascale and Vandeplanque
potentials. No quantitative explanation of the observed profiles of yellow bands has been,
so far, reported. The UFC theory cannot be directly applicable to the 75— 6S transition
in Cs because the dipole moment #{%’ in Eq. (2) is assumed to be independent of the inter-
atomic separation r. It seems, however, that this restriction can be removed by including
the dependence of 4’ on Condon points: a{’ = u{)(r). The form of this dependence
is, in- general case, not known. Some attempts of determining such a dependence have
recently been done by Granier, Granier and Schuller [76], who performed calculations
of the transition probability as a function of r for the resonance transitions 5P—5S and
forbidden transition 4D—5S in Rb perturbed by Xe. They have found that the transition
probability for 4D—5S, which is zero for r — co, increases rapidly at small r.

The absorption bands corresponding to the 5S—4D transitions in Rb-noble-gas
mixtures have been observed by Moe et al. [75a]. To my knowledge no quantitative
comparison with the calculations of Granier et al. [76] has been done Aas‘yet.
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F. Wings of Stark broadened hydrogen lines.

Now let me tell you briefly about some new results connected with the application
of the ‘UFC treatment to calculations of profiles in the wings of hydrogen lines broadened
due to Stark effect in plasmas. It is well known that non-adiabatic effects caused by
collisions of radiating atom with electrons are very important for the core of hydrogen
lines and can be precisely taken into account using the generalized impact theory of
Baranger [12, 28] and Kolb and Griem [29, 30]; On the other hand, experiments of Boldt
and Cooper [31], Elton and Griem [32] and Schliiter and Avila [33] showed that in the
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Fig. 9. Ratio R(44) = I(/_M)/(AZ) (of the. total intensity distribution I(AZ) to the Holtsmark distribution
Iu(42%)) as a function of A4 = A=A, for the Stark broadened Lyman-« line (A, = 1215 A) for the density
of electrons N, = 8.4x 106 em3 and T = 12200 K. Dashed curve— results of the non-adiabatic theory
of Smith, Cooper and Vidal [36]. Full line — purely adiabatic UFC calculations with y in Eq. (4) computed
from the adiabatic impact theory for linear Stark broadening. Curve —— corresponds to UFC calculations
with y computed from the approximation of H. R. Griem, Astrophys. J. 132, 883 (1960). Experimental
points are from Ref. [31}

intermediate frequency range the experimental profiles of Stark-broadened H lines did
not agree with those obtained from the generalized impact theory. In 1968 Schliiter [34]
performed the analysis of an extensive experimental material collected by him and by
the authors of papers [31-32] and showed that:

1. In far wings both the ions: and electrons give rise-to a quasistatic Holtsmark
profile Iy(x) = C,|x|=5/2, which is typically adiabatic in nature (C, is the linear Stark
broadening constant);

2. The transition from the impact to quasistatic broadening by electrons can be
understood basically as a transition from motional and non-adiabatic to quasistatic and
adiabatic broadening.

Similar conclusion was drawn by Kogan and Lisitsa [35]. Therefore, it seemed justified
to apply the UFC profile in Eq. (4) even for the case of Stark broadened H lines everywhere
except in the core, where the generalized impact theory should be used.
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For the linear Stark broadening the adiabatic potential difference in Eq. (10) is of
the form AV(r) = hC,r—2. Applying this AV(r) to the UFC formula in Eq. (11) the present
author has recently completed calculations of the shape of Stark broadened wings of the
Lyman-« line of hydrogen for conditions corresponding to the experiments of Boldt
and Cooper [31] and Elton and Griem [32]. Results. of these calculations are shown in
Figs 9 and 10, where the computed UFC values of the ratio R(x) = I(x)/I4(x) (of the total
intensity -distribution 7(x) to the Holtsmark distribution I(x)) are compared with those
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Fig. 10. Ratio R(44) for the Lyman-« line of H for N, ="3.3% 10!7 cm~3 and T = 20400 K. Dashed curve —

nonadiabatic theory of Smith, Cooper and Vidal [36]. Full line — pure adiabatic UFC calculations, with y

computed from the adiabatic impact theory for linear Stark broadening. Curve —— corresponds to UFC
calculations with y computed from the Griem approximation (Astrophys. J. 132, 883 (1960))‘

obtained from the non-adlabatlc unified classical-path theory of Smith, Cooper and
Vidal (SCV) [36] and with experiment. As it is seen the UFC results differ from those
of SCV, though the dlscrepancy is of a reasonable size. We can also see that the UFC
as well as SCV values of R(x) are in a reasonable agreement with experiment.

Let us mention that the full quantum one-perturber treatment of the Stark broadening
of hydrogen lines has recently been studied in a series of papers by Van Regemorter and
his coworkers at Meudon [37]. The connections between the full quantum and classical
path treatments of Stark broadening of H lines have just been investigated by Baryshmkov
and Lisitsa [78].

4. Line core

A. Lorentzian broadening

A great number of papers dealt with the analysis of the central part of the line, i.e.
for x ~ 0, where the impact approximation is valid. As was shown in Ref. [7] for x — 0
Eq. (6) yields F(x) — 1y so that the UFC profile in Eq. (4) becomes there identical with
the Lorentzian distribution of the -adiabatic impact theory. x
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I wish to emphasize, however, that in contradiction to the wings in the centre of
the line non-adiabatic effects may be very important. In general case the interaction
between atoms is essentially anisotropic so that the different potential curves corresponding
to various orientations of the angular momenta of the colliding atoms with respect to the
internuclear axis have to be taken into account. The collision induced transitions between
potential curves corresponding to different values of the quantum number m, may play
sometimes a very essential role, in particular those caused by the rotation of the inter-
atomic axis during the¢ collision. The orientation effects can be included using the scattering
S-matrix formalism with the classical path approximation as described by Tsao and
Curnutte [39] on the basis of Anderson’s theory [38]. This formalism yields the Lorentzian
shape of the line with halfwidth y and shift A expressed by elements of the S-matrix suitably
averaged over all allowed combinations of the m;-states.

In recent years several calculations based on the S-matrix formalism and the classical
path approximation have appeared. Lewis et al. [40] and Roueff [41] have calculated y
and 4 for the Na D lines broadened by atomic hydrogen using the potentials given by the
valence configuration interaction model. The width and shift of the Na D doublet broadened
by He have been calculated by Lewis and McNamara [42] using the Na-He potentials
calculated by Baylis [23]. In the paper by Roueff [43] the broadening of the same lines by
He has been calculated on the basis of an exchange potential model given by Nikitin
[44]. Recent experiment of Deleage et al. [45a] for Na D lines broadened by He at low
pressures has shown an excellent agreement between the calculated and measured
results.

Using the Hund molecular coupling scheme Kunth et al. [52] have shown that the
inclusion of the rotational coupling of levels during the collision allows a correct descrip-
tion of the behaviour of different lines in a multiplet. In particular, they were able to
explain quantitatively the experimental result that although the fine structure splittings of
the potassium 5%P; ,2"1 /2 and sodium 32P, /2, 1/2 levels are almost equal, the lines of the
doublets emitted from these two levels of sodium (3P— 3S) are practically equally broad-
ened by helium "at -temperature 450°K (1.52 and 1.62x 10-° rad s~* cm® for D, and D,
line, respectively), while the broadening of potassium lines (5P—4S) is different (4.65 and
6.65x10-° rad s~ cm3 for D, and D,).

Quite recently Wilson and Shimoni [46] reported results of their calculations of the
width and shift of Na D lines broadened by He based on the full quantum-mechanical
impact theory of Baranger [12]. They used the Baylis potential [23] and the combined
potential of Baylis and Krauss et al. [47] and found that the full quantum-mechanical
results are in good agreement with the classical path calculations.

The treatment of Lewis and McNamara [42] has just been extended in Newcastle
by Lwin, McCartan and Lewis [51, 55] to include the broadening and shift of the Na D
lines by Ne, Ar and Xe. These calculations showed very good agreement with the experi-
mental results of McCartan and Farr [56]. Another interesting results of these calcula-
tions [55] is that the temperature dependence for the broadening by small perturber§
(H, Ne, He) is y ~ 7% (If the interactions were purely van der Waals, then y ~ T03)

The influence of orientation effects on the pressure broadening of alkali doublets has
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also been studied within the framework of the classical path approximation by Schuller
et al. [48-50]. Using the Schuller treatment [48] Granier et al. [50] have found a good
agreement of experimental values of y and 4 of Rb and Cs resonance lines perturbed by
noble gases with those calculated on the basis of the Baylis [23] and Pascale and Vandeplan-
que [24] potentials.

The first calculation of the broadening and shift of the resonance line of Li perturbed
by He was carried out by Bottcher et al. [53] on the basis,of Baranger’s impact theory.
Recent experiment performed by Smith and Collins [54] in Oxford gave results which were
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Fig. 11. Collision broadening (line B) and shift (line §) as a function of perturbers density for the resonance
line of Li broadened by He (from Ref. [54])

in reasonable agreement with these calculations. An interesting result of this experiment
is the lack of the shift, which may be regarded as an evidence of the strong influence of
the repulsive part of the Li-He interatomic potential on the Li resonance line. Experi-
mental results of Smith and Collins for the width and shift as a function of helium density
are plotted in Fig. 11.

The calculations of Bottcher et al. [53] yielded for the shift of the Li resonance line
due to the pressure of helium the value 4/N = 0.05x 10~ rad s~' cm?® (red shift), while
the experimental result [54] is 4/N = (0.0040.05) x 10-? rad s~* cm?.

The purely adiabatic calculations based on the Linsholm-Foley impact theory have
recently been completed at Louisville, Kentucky by Kielkopf [57], who tabulated the
width and shift for the first three principal series lines of each alkali atom perturbed
by noble gases. He has used semiempirical potentials and shown that the resuits obtained
from the adiabatic impact theory should be most reliable for the case of broadening by
higher noble gases, such as Kr and Xe, since for these gases the attractive interactions
dominate the -uncertain repulsive interaction.
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B. Asymmetry in the line core

Recent advances in. the experimental technique of determining the line shape [58, 59]
have permitted measurements which reveal that deviations from the Lorentzian distribus
tion may occur sometimes even in the strictly impact region, i. e. in the line centre. Such
asymmetrical broadening has been observed in absorption first by Smith [60] in Oxford
for the resonance Tline 4227 A of calcium perturbed by Ar, Kr and Xe under pressures
up to one atmosphere and was attributed by him to breakdown of the impact approxima-
tion. McCartan [61] in Newcastle has found deviations from the Lorentzian shape on the
red side of the potassium lines 4044 and 4047 A perturbed by Ar and Kr. Both Smith
and McCartan have noted, however, that when perturbmg gas is helium the lines are
quite symmetric in the impact region. ‘

Smith [62] has recently found asymmetrical distribution in the central parts of the
4555 and 4593 A lines of Cs perturbed by Ar and Xe. A detailed analysis performed by
him has shown that both for calcium and caesium lines [60, 62] the observed asymmetries
can be satisfactorily described by the asymmetrical profile derlved by Anderson and Talman
[63] under assumption of the van der Waals potential. = * .

On-the other hand Baylis and the present author [64] have just shown that the non-
Lorentzian behaviour in the core of the line can be obtained from the UFC profile in
Eq. (4) if H(x) in Eq. (7) is expanded in powers of x. In the ﬁrst approximation the
function F(x) in Eq. (4) may be then written as

o= a9

where the asymmetry factor « for the van der Waals interaction 4 V(r) = fiCgr—9 is given by

23\ ‘
o = 0.1183 (NF) Ly (16)
which agrees well with the Anderson-Talman result
(C.\313 ‘.
o = 2.63N (—E) (17)
i v

and with: Smith’s experfmental data (v — the mean relative velocity of colliding atoms).

It should be noted that an asymmetry similar to that discussed above was found by
Kielkopf [18b] and by Royer and Allard [69] in their classical phase-shift calculations of
total line profiles.

A number of theoretical papers have recently drawn attention to. a further possible
cause of the asymmetry of spectral lines [65-68]. In the experimental analysis of line shapes
in the low pressure region one assumes that the resultant line shape is described by
the well known Voigt profile, i. e. the convolution of the Doppler and Lorentzian
profiles, which are treated as statistically independent. If the correlation between Doppler
and pressure broadening is taken into account then as was shown [65-68] deviations from
the Voigt function giving rise to line asymmetry may occur. The magnitude of this asym-
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metry depends on the ratio’ of the mass of the perturber to that of the radiator (x). Ward,
Cooper and Smith [68] have pointed out that the correlation effects are not expected to
be noticeable if « is less than 5. For most of the published line broadening experiments
x < 5 and this justifies the use of the Voigt profile in their analysis. It is also clear that the
asymmetry observed by Smith [60, 62] in his experiments on Ca and Cs lines cannot
be caused by the correlation effects (x = 0.3 for Cs+Ar and x = 1 for Cs+Xe).

- The first experimental evidence of correlation effects has just been found by McCartan
and Lwin [70] for the resonance line 6707 A of lithium perturbed by Xe (x = 19). They
have shown that the blue side of this line may be fit to a Voigt profile but the derived
width parameters are not satisfactory, as can be seen in Fig. 12. The Gaussian widths
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Fig. 12. The Voigt analysis of the lithium resonance lines broadened by various pressures of xenon. The
Gaussian widths (4 + +) as determined from the 5% height of the profile are in excellent agreement with
the predictions of Ward, Cooper and Smith (— ——) (from Ref. [70])

depend on xenon pressure and differ from the value expected from the measurements of
the temperature of the absorption cell filled with xenon. Fig. 12 shows that the values
of the Gaussian widths determined from the 5% height of the line profile are in excellent
agreement with those computed by Ward, Cooper and Smith [68]. It should also be empha-
sized that experiments of McCartan and Lwin have shown that when the 6707 A line of Li
is perturbed by helium (x = 0.6) the complete profile fits a Voigt shape exactly with the
Gaussian width independent of pressure. An analysis of line shape for other noble gases:
neon (k = 2.9), argon (x = 5.9) and krypton (x = 12) revealed that the deviation from the
Voigt profile becomes more noticeable as the perturber mass is increased. The main
conclusion of McCartan and Lwin’s work is that the high resolution investigation of line
shape when « is greater than about 5 can give direct evidence of correlation effects
which are in excellent agreement with the theory of Ward, Cooper and Smith. The in-
fluence of correlation effects on atomic line shapes may not have been observed in pre-
vious experiments because of lack of resolution and a restriction to small values of «.
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Let us mention in the end that correlation between Doppler and pressure broadening
are of great importance in laser spectroscopy as shown in papers of Berman and Lamb
[67, 711, Cooper, Smith et al. [68, 72] and Fiutak et al. [66]. These papers have taken into
account both the “energy-level perturbation” and “velocity-changing” aspects of atomic
collisions. Both these aspects appear to be very essential also in studies of the influence
of collisions on the line shapes associated with Doppler-free two-photon spectroscopy.
A theory of collision broadening in the two-photon spectroscopy has just been developed
by Berman [73] and by Ben-Reuven et al. [74]. They have demonstrated that systematic
two-photon line shape investigations can provide a new and important probe of pressure
effects in atomic and molecular systems.
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